• Acta Optica Sinica
  • Vol. 37, Issue 2, 216002 (2017)
Ma Liya1、2、*, Guo Qi1, Ai Erken1, Li Yudong1, Li Zhanhang1、2, Wen Lin1, and Zhou Dong1
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    DOI: 10.3788/aos201737.0216002 Cite this Article Set citation alerts
    Ma Liya, Guo Qi, Ai Erken, Li Yudong, Li Zhanhang, Wen Lin, Zhou Dong. Photoluminescence Spectrum Study of Electron Beam Irradiated In0.22Ga0.78As/GaAs Quantum Well[J]. Acta Optica Sinica, 2017, 37(2): 216002 Copy Citation Text show less
    References

    [1] Wang Zhanguo. Research progress of low dimensional semiconductor materials and devices[J]. World Science and Technology Research and Development, 2000, 22(1): 1-8.

    [2] Lin Weizhu, Qiu Zhiren, Xu Wencheng. Femtosecond relaxation of excited carriers in AlGaAs/GaAs multiple quantum wells[J]. Acta Optica Sinica, 1992, 12(5): 390-395.

    [3] Wei Guohua, Wang Bin, Li Junmei, et al. Temperature dependence of the photoluminescence properties and the research on the mechanism of In0.2Ga0.8As/GaAs single quantum well[J]. Chinese Journal of Luminescence, 2010, 31(5): 619-623.

    [4] Wei Quanxiang, Wu Bingpeng, Ren Zhengwei, et al. Photoluminescence study of two layer stacked InAs/GaAs quantum dots[J]. Acta Optica Sinica, 2012, 32(1): 0125001.

    [5] Li Xueqian, Qu Yi, Song Xiaowei, et al. Experimental study of GaAlAs/GaAs quantum well structure[J]. Acta Optica Sinica, 1997, 17(2): 146-149.

    [6] Wu Dianzhong, Wang Wenxin, Yang Chengliang. InAs quantum dots with InGaAs caplayer infrared detector grown by MBE[J]. Chinese Journal of Luminescence, 2009, 30(2): 209-213.

    [7] Dingle R, Wiegmann W, Henry C H. Quantum states of confined carriers in very thin AlxGa1-xAs-GaAs-AlxGa1-x As heterostructures[J]. Physical Review Letters, 1974, 33(14): 827-830.

    [8] Dingle R, Gossard A C, Wiegmann W. Direct observation of superlattice formation in a semiconductor heterostructure[J]. Physical Review Letters, 1975, 34(21): 1327-1330.

    [9] Weisbuch C, Miller R C, Dingle R, et al. Intrinsic radiative recombination from quantum states in GaAs/AlxGa1-xAs multi-quantum well structures[J]. Solid State Communications, 1981, 37(3): 219-222.

    [10] Wood T H, Burrus C A, Miller D A B, et al. High-speed optical modulation with GaAs/GaAlAs quantum wells in a p-i-n diode structure[J]. Applied Physics Letters, 1984, 44(1): 16-18.

    [11] Kondo K, Saito J, Igarashi T, et al. MBE as a production technology for HEMT LSIs[J]. Journal of Crystal Growth, 1989, 95(1-4): 309-316.

    [12] Sonoda T, Ito M, Kobiki M, et al. Ultra-high throughput of GaAs and (AlGa)As layers grown by MBE with a specially designed MBE system[J]. Journal of Crystal Growth, 1989, 95(1-4): 317-321.

    [13] Johnston A H. Radiation damage of electronic and optoelectronic devices in space[C]. 4th International Workshop on Radiation Effects on Semiconductor Devices for Space Application, 2000.

    [14] Kawanishi H, Sugimoto Y, Tanaka N, et al. Sub-100 nm patterning of GaAs using in situ electron beam lithography[J]. Japanese Journal of Applied Physics, 1993, 32: 4033-4037.

    [15] Manasreh M O, Ballet P, Smathers J B, et al. Proton irradiation effects on the intersubband transition in GaAs/AlGaAs multiple quantum wells with bulk or superlattice barriers[J]. Applied Physics Letters, 1999, 75(4): 525-527.

    [16] Aierken A, Guo Q, Huhtio T, et al. Optical properties of electron beam and γ-ray irradiated InGaAs/GaAs quantum well and quantum dot structures[J]. Radiation Physics and Chemistry, 2013, 83: 42-47.

    [17] Huang Wanxia, Lin Libin, Zeng Yiping, et al. The effects of proton irradiation on optical properties of GaAs/AlGaAs quantum wells[J]. Chinese Journal of Semiconductors. 1999, 20(11): 957-962.

    [18] Che Chi, Liu Qingfeng, Ma Jing, et al. Displacement damage effects on the characteristics of quantum dot lasers[J]. Acta Physica Sinica, 2013, 62(9): 094219.

    [19] Ma Jing, Che Chi, Han Qiqi, et al. Displacement damage effect on the characteristics of quantum well laser[J]. Acta Physica Sinica, 2012, 61(21): 214211.

    [20] Zhou Yanping, Hao Na, Yang Rui, et al. Electron radiation effect of LED[J]. Infrared and Laser Engineering, 2013, 42(2): 454-458.

    [21] Lambkin J D, Dunstan D J, Homewood K P, et al. Thermal quenching of the photoluminescence of InGaAs/GaAs and InGaAs/AlGaAs strained-layer quantum wells[J]. Applied Physics Letters, 1990, 57(19): 1986-1988.

    [22] Anderson N G, Laidig W D, Kolbas R M, et al. Optical characterization of pseudomorphic InxGa1-xAs/GaAs single quantum well heterostructures[J]. Journal of Applied Physics, 1986, 60(7): 2361-2367.

    [23] Ye Zhicheng, Shu Yongchun, Cao Xue, et al. Strain effect on temperature dependent photoluminescence from InxGa1-xAs/GaAs quantum wells[J]. Chinese Journal of Luminescence, 2011, 32(2): 164-168.

    [24] Ryu S W, Kim I, Choe B D, et al. The effect of strain on the interdiffusion in InGaAs/GaAs quantum wells[J]. Applied Physics Letters, 1995, 67(10): 1417-1419.

    [25] Zhao Jie, Wang Yongchen. Effects on optical and electrical properties of InGaAs(P)/InP MQW structure by quantum well intermixing[J]. Chinese Journal of Luminescence, 2002, 23(6): 540-548.

    Ma Liya, Guo Qi, Ai Erken, Li Yudong, Li Zhanhang, Wen Lin, Zhou Dong. Photoluminescence Spectrum Study of Electron Beam Irradiated In0.22Ga0.78As/GaAs Quantum Well[J]. Acta Optica Sinica, 2017, 37(2): 216002
    Download Citation