• Laser & Optoelectronics Progress
  • Vol. 53, Issue 11, 110002 (2016)
Zhang Jianna*, Zhang Bo, and Shen Jingling
Author Affiliations
  • [in Chinese]
  • show less
    DOI: 10.3788/lop53.110002 Cite this Article Set citation alerts
    Zhang Jianna, Zhang Bo, Shen Jingling. Absorption Modulation Method of Terahertz Metamaterial[J]. Laser & Optoelectronics Progress, 2016, 53(11): 110002 Copy Citation Text show less
    References

    [1] Shelby R A, Smith D R, Schultz S. Experimental verification of a negative index of refraction[J]. Science, 2001, 292(5514): 77-79.

    [2] Smith D R, Pendry J B, Wiltshire M C K. Metamaterials and negative refractive index[J]. Science, 2004, 305(5685): 788-792.

    [3] Zhang S, Park Y S, Li J, et al. Negative refractive index in chiral metamaterials[J]. Phys Rev Lett, 2009, 102(2): 023901.

    [4] Pendry J B. Negative refraction makes a perfect lens[J]. Phys Rev Lett, 2000, 85(20): 3966-3969.

    [5] Fang N, Lee H, Sun C, et al. Sub-diffraction-limited optical imaging with a silver superlens[J]. Science, 2005, 308(5721): 534-537.

    [6] Zhang X, Liu Z W. Superlenses to overcome the diffraction limit[J]. Nat Mater, 2008, 7(6): 435-441.

    [7] Schurig D, Mock J J, Justice B J, et al. Metamaterial electromagnetic cloak at microwave frequencies[J]. Science, 2006, 314(5801): 977-979.

    [8] Liu R, Ji C, Mock J J, et al. Broadband ground-plane cloak[J]. Science, 2009, 323(5912): 366-369.

    [9] Valentine J, Li J, Zentgraf T, et al. An optical cloak made of dielectrics[J]. Nat Mater, 2009, 8(7): 568-571.

    [10] Li Huayue, Liu Jianjun, Han Zhanghua, et al. Terahertz metamaterial analog of electromagnetically induced transparency for a refractive-index-based sensor[J]. Acta Optica Sinica, 2014, 34(2): 0223003.

    [11] Han Hao, Wu Dongwei, Liu Jianjun, et al. A terahertz metamaterial analog of electromagnetically induced transparency[J]. Acta Optica Sinica, 2014, 34(4): 0423003.

    [12] Xing Wei, Yan Fengping, Tan Siyu, et al. Simulation analysis on the designing of high-Q terahertz metamaterial[J]. Chinese J Lasers, 2016, 43(1): 0106005.

    [13] Piao X J, Yu S, Park N. Control of Fano asymmetry in plasmon induced transparency and its application to plasmonic waveguide modulator[J]. Opt Express, 2012, 20(20): 20994-20999.

    [14] Landy N I, Sajuyigbe S, Mock J J, et al. Perfect metamaterial absorber[J]. Phys Rev Lett, 2008, 100(20): 207402.

    [15] He J, Li Q M, Shen J L. Asymmetric double split-ring metamaterials absorber in the terahertz region[C]. SPIE, 2012, 8562: 85620N.

    [16] Liu X L, Starr T, Starr A F, et al. Infrared spatial and frequency selective metamaterial with near-unity absorbance[J]. Phys Rev Lett, 2010, 104(20): 207403.

    [17] Shen X P, Cui T J, Zhao J M, et al. Polarization-independent wide-angle triple-band metamaterial absorber[J]. Opt Express, 2011, 20(10): 9401-9407.

    [18] Wu C, Neuner B, Shvets G, et al. Large-area wide-angle spectrally selective plasmonic absorber[J]. Phys Rev B, 2011, 84(7): 075102.

    [19] Aydin K, Ferry V E, Briggs R M, et al. Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers[J]. Nat Commun, 2011, 2(520): 1-7.

    [20] Diem M, Koschny T, Soukoulis C M. Wide-angle perfect absorber/thermal emitter in the terahertz regime[J]. Phys Rev B, 2009, 79(3): 033101.

    [21] Jang T, Youn H, Shin Y J, et al. Transparent and flexible polarization-independent microwave broadband absorber[J]. ACS Photon, 2014, 1(3): 279-284.

    [22] Grant J, Ma Y, Saha S, et al. Polarization insensitive, broadband terahertz metamaterial absorber[J]. Opt Lett, 2011, 36(20): 3476-3478.

    [23] Wen Y Z, Ma W, Bailey J, et al. Planar broadband and high absorption metamaterial using single nested resonator at terahertz frequencies[J]. Opt Lett, 2014, 39(6): 1589-1592.

    [24] Ma Y, Chen Q, Grant J, et al. A terahertz polarization insensitive dual band metamaterial absorber[J]. Opt Lett, 2011, 36(6): 945-947.

    [25] Ye Y Q, Jin Y, He S. Omnidirectional, polarization-insensitive and broadband thin absorber in the terahertz regime[J]. J Opt Soc Am B, 2010, 27(3): 498-504.

    [26] Wang B X, Wang L L, Wang G Z, et al. Tunable bandwidth of the terahertz metamaterial absorber[J]. Opt Commun, 2014, 325: 78-83.

    [27] Avitzour Y, Urzhumov Y, Shvets G. Wide-angle infrared absorber based on a negative-index plasmonic metamaterial[J]. Phys Rev B, 2009, 79(4): 045131.

    [28] Wen Y Z, Ma W, Bailey J, et al. Broadband terahertz metamaterial absorber based on asymmetric resonators with perfect absorption[J]. IEEE T Thz Sci Techn, 2015, 5(3): 406-411.

    [29] Hu T, Bingham C M, Striwerda A C, et al. Highly flexible wide angle of incidence terahertz metamaterial absorber: design, fabrication, and characterization[J]. Phys Rev B, 2008, 78(24): 241103.

    [30] Hu T, Landy N I, Bingham C M, et al. A metamaterial absorber for the terahertz regime: design, fabrication and characterization[J]. Opt Express, 2008, 20(10): 7201-7208.

    [31] Shen X P, Yang Y, Zang Y Z, et al. Triple-band and terahertz metamaterial absorber: design, experiment, and physical interpretation[J]. Appl Phys Lett, 2012, 101(15): 154102.

    [32] Xu Z C, Gao R M, Ding C F, et al. Multiband metamaterial absorber at terahertz frequencies[J]. Chinese Phys Lett, 2014, 31(5): 054205.

    [33] Chen H T, Zhou J F, O′Hara J F, et al. Antireflection coating using metamaterials and identification of its mechanism[J]. Phys Rev Lett, 2010, 105(7): 073901.

    [34] Huang L, Chowdhury D R, Ramani S, et al. Impact of resonator geometry and its coupling with ground plane on ultrathin metamaterial perfect absorbers[J]. Appl Phys Lett, 2012, 101(10): 101102.

    [35] Chen H T. Semiconductor activated terahertz metamaterials[J]. Frontiers of Optoelectronics, 2015, 8(1): 27-43.

    [36] Chen H T. Interference theory of metamaterial perfect absorbers[J]. Opt Express, 2012, 20(7): 7205-7202.

    [37] Chowdhury D R, Singh R, O′Hara J F, et al. Dynamically reconfigurable terahertz metamaterial through photo-doped semiconductor[J]. Appl Phys Lett, 2011, 99(23): 231101.

    [38] Fan K B, Zhao X G, Zhang J D, et al. Optically tunable terahertz metamaterials on highly flexible substrates[J]. IEEE T Thz Sci Techn, 2013, 3(6): 702-708.

    [39] Liao M L, Cong J W, Zhang X, et al. Development of an electrically controlled terahertz-wave modulator[J]. J Mod Optic, 2013, 60(20): 2090-2095.

    [40] Chen H T, Padilla W J, Cich M J, et al. A metamaterial solid-state terahertz phase modulator[J]. Nat Photonics, 2009, 3(3): 148-151.

    [41] Chen H T, Palit S, Tyler T, et al. Hybrid metamaterials enable fast electrical modulation of freely propagating terahertz waves[J]. Appl Phys Lett, 2008, 93(9): 091120.

    [42] Wang B X, Zhai X, Wang G Z, et al. Frequency tunable metamaterial absorber at deep-subwavelength scale[J]. Opt Mater Express, 2015, 5(2): 227-235.

    [43] Zhu J, Han J G, Zhen T, et al. Thermal broadband tunable terahertz metamaterials[J]. Opt Commun, 2011, 284(12): 3129-3133.

    [44] Alves F, Kearney B, Grbovic D, et al. Strong terahertz absorption using SiO2/Al based metamaterial structures[J]. Appl Phys Lett, 2012, 100(11): 111104.

    [45] Wen Y Z, Ma W, Bailey J, et al. Absorption modulation of terahertz metamaterial by varying the conductivity of ground plane[J]. Appl Phys Lett, 2014, 105(14): 141111.

    [46] Xu Z C, Gao R M, Ding C F, et al. Photoexcited broadband blueshift tunable perfect terahertz metamaterial absorber[J]. Opt Mater, 2015, 42: 148-151.

    [47] Xu Z C, Gao R M, Ding C F, et al. Photoexcited switchable metamaterial absorber at terahertz frequencies[J]. Opt Commun, 2015, 344: 125-128.

    [48] Kafesaki M, Shen N H, Tzortzakis S, et al. Optically switchable and tunable terahertz metamaterials through photoconductivity[J]. J Optics, 2012, 14(11): 114008.

    [49] Manceau J M, Shen N H, Kafesaki M, et al. Dynamic response of metamaterials in the terahertz regime: blueshift tenability and broadband phase modulation[J]. Appl Phys Lett, 2010, 96(2): 021111.

    [50] Shen N H, Kafesaki M, Koschny T, et al. Broadband blueshift tunable metamaterials and dual-band switches[J]. Phys Rev B, 2009, 79(20): 201102.

    [51] Shen N H, Massaouti M, Gokkavas M, et al. Optically implemented broadband blueshift switch in the terahertz regime[J]. Phys Rev Lett, 2011, 106(3): 037403.

    [52] Cong J W, Zhou Z Q, Yao H B, et al. Reducing the pump power of optically controlled terahertz metamaterial via tailoring the resistance of the silicon gap region[J]. J Optics, 2015, 20(10): 105108.

    [53] Shen X P, Cui T J. Photoexcited broadband redshift switch and strength modulation of terahertz metamaterial absorber[J]. J Optics, 2012, 14(11): 114012.

    [54] Wang G C, Zhang J N, Zhang B, et al. Photo-excited terahertz switch based on composite metamaterial structure[J]. Opt Commun, 2016, 374: 64-68.

    [55] Liu X W, Liu H J, Sun Q B, et al. Metamaterial terahertz switch based on split-ring resonator embedded with photoconductive silicon[J]. Appl Opt, 2015, 54(11): 3478-3483.

    [56] Zhang J N, Wang G C, Zhang B, et al. Photo-excited broadband tunable terahertz metamaterial absorber[J]. Opt Mater, 2016, 54: 32-36.

    [57] He Y N, Zhang B, He T, et al. Optically-controlled metamaterial absorber based on hybrid structure[J]. Opt Commun, 2015, 356:595-598.

    CLP Journals

    [1]  Junlin Wang, Binzhen Zhang, Junping Duan, Xin Wang. Flexible Dual-Stopband Terahertz Metamaterial Filter[J]. Acta Optica Sinica, 2017, 37(10): 1016001

    Zhang Jianna, Zhang Bo, Shen Jingling. Absorption Modulation Method of Terahertz Metamaterial[J]. Laser & Optoelectronics Progress, 2016, 53(11): 110002
    Download Citation