• Journal of Innovative Optical Health Sciences
  • Vol. 15, Issue 4, 2230007 (2022)
[in Chinese]1, [in Chinese]1, [in Chinese]1, [in Chinese]2, [in Chinese]3、*, and [in Chinese]1、4
Author Affiliations
  • 1Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, P. R. China
  • 2School of Electrical Science and Engineering, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, P. R. China
  • 3Department of Medical Engineering, University of South Florida, Tampa, FL 33620, USA
  • 4Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, P. R. China
  • show less
    DOI: 10.1142/s1793545822300075 Cite this Article
    [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese]. Biomedical microwave-induced thermoacoustic imaging[J]. Journal of Innovative Optical Health Sciences, 2022, 15(4): 2230007 Copy Citation Text show less
    References

    [1] A. G. Bell, "On the production and reproduction of sound by light," Am. J. Sci. s3-20, 305-324 (1880), doi: 10.2475/ajs.s3-20.118.305.

    [2] T. Bowen, "Radiation-induced thermoacoustic soft tissue imaging," 1981 Ultrasonics Symp. Vol. 2, pp. 817-822, USA (1981), doi: 10.1109/ULTSYM. 1981.197737.

    [3] R. G. Olsen, J. C. Lin, "Acoustical imaging of a model of a human hand using pulsed microwave irradiation," Bioelectromagnetics 4, 397-400 (1983), doi: 10.1002/bem.2250040410.

    [4] R. A. Kuger, P. Y. Liu, Y. C. Fang, C. R. Appledorn, "Photoacoustic ultrasound (PAUS)-reconstruction tomography," Med. Phys. 22, 1605-1609 (1995), doi: 10.1118/1.597429.

    [5] A. A. Oraevsky, S. L. Jacques, R. O. Esenaliev, F. K. Tittel, "Laser-based optoacoustic imaging in biological tissues," Proc. SPIE (1994) 122-128, doi: 10.1117/12.182927.

    [6] G. Ku, B. D. Fornage, X. Jin, M. Xu, K. K. Hunt, L. V. Wang, "Thermoacoustic and photoacoustic tomography of thick biological tissues toward breast imaging," Technol. Cancer Res. T. 4, 559-565 (2005), doi: 10.1177/153303460500400509.

    [7] C. C. Johnson, A. W. Guy, "Nonionizing electromagnetic wave effects in biological materials and system," Proc. IEEE 60, 692-718 (1972), doi: 10.1109/proc.1972.8728.

    [8] R. A. Kruger, K. D. Miller, H. E. Reynolds, L. William, J. Kiser, D. R. Reinecke, G. A. Kruger, "Breast cancer in vivo contrast enhancement with thermoacoustic CT at 434 MHz-feasibility study," Radiology 216, 279-283 (2000), doi: 10.1148/radiology.216.1.r00jl30279.

    [9] R. A. Kruger, W. L. Kiser, K. D. Miller, H. E. Reynolds, P. J. Hofacker, C. T. Thermoacoustic, 2000 IEEE MTT-S Int. Microwave Symp. Vol. 2, pp. 933-936 (2000), doi: 10.1109/MWSYM.2000.863510.

    [10] R. A. Kruger, D. R. Reinecke, G. A. Kruger, "Thermoacoustic computed tomography—technical considerations," Med. Phys. 26, 1832-1837 (1999), doi: 10.1118/1.598688.

    [11] R. A. Kruger, W. L. Kiser, D. R. Reinecke, G. A. Kruger, "Application of thermoacoustic computed tomography to breast imaging," Proc. SPIE 3659, 426-430 (1999), doi: 10.1117/12.349519.

    [12] R. A. Kruger, K. K. Kopecky, A. M. Aisen, D. R. Reinecke, G. A. Kruger, W. L. Kiser, "Thermoacoustic CT with radio waves: a medical imaging paradigm," Radiology 211, 275-278 (1999), doi: 10.1148/radiology.211.1.r99ap05275.

    [13] W. L. Kiser, R. A. Kruger, "Thermoacoustic computed tomography: limits to spatial resolution," Proc. SPIE 3659, 895-905 (1999), doi: 10.1117/12.349572.

    [14] S. P. Delrio, R. A. Kruger, R. Lam, D. R. Reinecke, "Polarization effects in thermoacoustic CT of biologic tissue at 434MHz," Proc. SPIE Int. Society for Optical Engineering, p. 75642D (2010), doi: 10.1117/12.841027.

    [15] R. A. Kruger, K. Stantz, W. L. Kiser, "Thermoacoustic CT of the Breast," Proc. SPIE 4682, 521-525 (2002), doi: 10.1117/12.465596.

    [16] R. A. Kruger, W. L. Kiser, K. D. Miller, H. E. Reynolds, "Thermoacoustic CT Scanner for Breast Imaging: Design Considerations," Proc. SPIE 3982, 354-359 (2000), doi: 10.1117/12.382244.

    [17] Y. He, C. J. Liu, L. Lin, L. V. Wang, "Comparative effects of linearly and circularly polarized illumination on microwave-induced thermoacoustic tomography," IEEE Antennas Wirel. Propag. Lett. 16, 1593-1596 (2017), doi: 10.1109/LAWP.2017.2652853.

    [18] C. Li, M. Pramanik, G. Ku, L. V. Wang, "Image distortion in thermoacoustic tomography caused by microwave diffraction," Phys. Rev. E 77, 031923 (2008), doi: 10.1103/PhysRevE.77.031923.

    [19] A. Yan, L. Lin, C. Liu, J. Shi, S. Na, L. V. Wang, "Microwave-induced thermoacoustic tomography through an adult human skull," Med. Phys. 46, 1793-1797 (2019), doi: 10.1002/mp.13439.

    [20] A. Yan, L. Lin, S. Na, C. Liu, L. V. Wang, "Large field homogeneous illumination in microwave-induced thermoacoustic tomography based on a quasi-conical spiral antenna," Appl. Phys. Lett. 113, 123701 (2018), doi: 10.1063/1.5043541.

    [21] Y. He, Y. Shen, X. Feng, C. Liu, L. V. Wang, "Homogenizing microwave illumination in thermoacoustic tomography by a linear-to-circular polarizer based on frequency selective surfaces," Appl. Phys. Lett. 111, 063703 (2017), doi: 10.1063/1.4993942.

    [22] G. Lalwani, X. Cai, L. Nie, L. V. Wang, B. Sitharaman, "Graphene-based contrast agents for photoacoustic and thermoacoustic tomography," Photoacoustics 1, 62-67 (2013), doi: 10.1016/j.pacs.2013.10.001.

    [23] L. V. Wang, "Single-walled carbon nanotubes as a multimodal thermoacoustic and photoacoustic contrast agent," J. Biomed. Opt. 14, 034018 (2009), doi: 10.1039/a806389c.

    [24] L. Liu, K. He, L. V. Wang, "Transcranial ultrasonic wave propagation simulation: Skull insertion loss and recovery," Proc. SPIE 6437, 64370X-0-X-6 (2007), doi: 10.1117/12.698237.

    [25] Y. Xu, L. V. Wang, "Rhesus monkey brain imaging through intact skull with thermoacoustic tomography," IEEE Trans. Ultrason. Ferroelectr. Freq. Control 53, 542-548 (2006), doi: 10.1109/TUFFC.2006.1610562.

    [26] M. Xu, G. Ku, X. Jin, L. V. Wang, B. D. Fornage, K. K. Hunt, "Breast cancer imaging by microwaveinduced thermoacoustic tomography," Proc. SPIE 5697, 45-48 (2005), doi: 10.1117/12.589128.

    [27] M. Xu, L. V. Wang, "Analytic explanation of spatial resolution related to bandwidth and detector aperture size in thermoacoustic or photoacoustic reconstruction," Phys. Rev. E 67, 056605(2003), doi: 10.1103/PhysRevE.67.056605.

    [28] L. V. Wang, "Pulsed-microwave-induced thermoacoustic tomography: Filtered backprojection in a circular measurement configuration," Med. Phys. 29, 1661-1668 (2002), doi: 10.1088/0031-8949/76/1/009.

    [29] L. V. Wang, "Microwave-induced thermoacoustic tomography: Reconstruction by synthetic Biomedical microwave-induced thermoacoustic imaging aperture," Med. Phys. 28, 2427-2431 (2001), doi: 10.1118/1.1418015.

    [30] G. Ku, L. V. Wang, "Scanning microwave-induced thermoacoustic tomography: Signal, resolution, and contrast," Med. Phys. 28, 4-10 (2001), doi: 10.1118/1.1333409.

    [31] G. Ku, L. V. Wang, "Scanning thermoacoustic tomography in biological tissue," Med. Phys. 27, 1195-1202 (2000). doi: 10.1118/1.598984.

    [32] L. V. Wang, X. Zhao, H. Sun, G. Ku, "Microwaveinduced acoustic imaging of biological tissue" Rev. Sci. Instrum. 70, 3744-3748 (1999), doi: 10.1063/1.1149986.

    [33] L. V. Wang, "Prospects of photoacoustic tomography," Med. Phys. 35, 5758-5767 (2008), doi: 10.1118/1.3013698.

    [34] K. Ravina, L. Lin, C. Y. Liu, D. Thomas, D. Hasson, L. V. Wang, J. J. Russin, "Prospects of photo- and thermos-acoustic Imaging in Neurosurgery," Neurosurg. 87, 11-24 (2020), doi: 10.1093/neuros/nyz420.

    [35] A. Mashal, J. H. Booske, S. C. Hagness, "Toward contrast-enhanced microwave-induced thermoacoustic imaging of breast cancer: An experimental study of the effects of microbubbles on simple thermos-acoustic targets," Phys. Med. Biol. 54, 64-650 (2009), doi: 10.1088/0031-9155/54/3/011.

    [36] L. M. Neira, R. O. Mays, S. C. Hagness, "Human breast phantoms test beds for the development of micro-wave diagnostic and therapeutic technologies," IEEE Pulse 8, 66-70 (2017), doi: 10.1109/MPUL.2017.2701489.

    [37] J. D. Shea, P. Kosmas, B. D. Van Veen, S. C. Hagness, "Contrast enhanced microwave imaging of breast tumors: A computational study using 3-D realistic numerical phantoms," Inverse Probl. 26, 74009 (2010), doi: 10.1088/0266-5611/26/7/074009.

    [38] M. Lazebnik, L. McCartney, D. Popovic, C. B. Watkins, M. J. Lindstrom, J. Harter, S. Sewall, A. Magliocco, J. H. Booske, M. Okoniewski, S. C. Hagness, "A large-scale study of the ultrawideband microwave dielectric properties of normal breast tissue obtained from reduction surgeries," Phys. Med. Biol. 52, 2637-2656 (2007), doi: 10.1088/0031-9155/52/10/001.

    [39] S. K. Davis, H. Tandradinata, S. C. Hagness, B. D. Van Veen, "Ultrawideband microwave breast cancer detection: A detection-theoretic approach using the generalized likelihood ratio test," IEEE Trans. Biomed. Eng. 52, 1237-1250 (2005), doi: 10.1109/TBME.2005.847528.

    [40] S. K. Patch, D. Hull, W. A. See, G. W. Hanson, "Toward quantitative whole organ thermoacoustics with a clinical array plus one very low-frequency channel applied to prostate cancer imaging," IEEE Trans. Ultrason. Ferroelectr. Freq. Control 63, 245-255 (2015), doi: 10.1109/TUFFC.2015.2513018.

    [41] S. K. Patch, D. Hull, M. Thomas, S. K. Griep, K. Jacobsohn, W. A. See, "Thermoacoustic contrast of prostate cancer due to heating by very high frequency irradiation," Phys. Med. Biol. 60, 689-708 (2015), doi: 10.1088/0031-9155/60/2/689.

    [42] A. T. Eckhart, R. T. Balmer, W. A. See, S. K. Patch, "Ex vivo thermoacoustic imaging over large fields of view with 108MHz irradiation," IEEE Trans. Biomed. Eng. 58 (2011), doi: 10.1109/TBME.2011.2128319.

    [43] S. K. Patch, W. A. See, "Broadband & volumetric thermos-acoustic imaging of fresh human prostates using a clinical array," 2015 IEEE Great Lakes Biomedical Conf. (GLBC) Milwaukee, pp. 1-4, WI, USA (2015), doi: 10.1109/GLBC.2015. 7158296.

    [44] S. K. Patch, M. Haltmeier, "Thermoacoustic tomography - ultra-sound attenuation artifacts," IEEE Nuclear Science Symp. Conf. Record, pp. 2604-2606 (2006), doi: 10.1109/NSSMIC.2006.354441.

    [45] G. W. Hanson, S. K. Patch, "Optimum electromagnetic heating of nanoparticle thermal contrast agents at RF frequencies," J. Appl. Phys. 106, 054309 (2009), doi: 10.1063/1.3204653.

    [46] D. Fallon, L. Yan, G. W. Hanson, S. K. Patch, "RF testbed for thermoacoustic tomography," Rev. Sci. Instrum. 80, 064301 (2009), doi: 10.1063/1.3133802.

    [47] S. K. Patch, "Thermoacoustic tomography—consistency conditions and the partial scan problem," Phys. Med. Biol. 49, 2305-2315 (2004), doi: 10.1088/0031-9155/49/11/013.

    [48] Z. Chi, Y. Zhao, J. Yang, T. Li, G. Zhang, H. Jiang, "Thermoacoustic tomography of in vivo human finger joints," IEEE Trans. Biomed. Eng. 66, 1598-1608 (2019), doi: 10.1109/TBME.2018.2876309.

    [49] Y. Zhao, T. Shan, Z. Chi, H. Jiang, "Thermoacoustic tomography of germinal matrix hemorrhage in neonatal mouse cerebrum brain," J. X-ray Sci. Technol. 28, 83-93 (2020), doi:10.3233/XST-190599.

    [50] L. Huang, S. Ge, Z. Zheng, H. Jiang, "Design of a handheld dipole antenna for a compact thermoacoustic imaging system," Med. Phys. 46, 851-856 (2019), doi: 10.1002/mp.13294.

    [51] Z. Chi, L. Huang, S. Ge, H. Jiang, "Anti-phase microwave illumination-based thermoacoustic tomography of in vivo human finger joints," Med. Phys. 46, 2363-2369 (2019), doi: 10.1002/mp.13506.

    [52] Z. Zheng, L. Huang, H. Jiang, "Label-free thermoacoustic imaging of human blood vessels in vivo," Appl. Phys. Lett. 113, 253702 (2018), doi: 10.1063/1.5054652.

    [53] Y. Zhao, Z. Chi, L. Huang, Z. Zheng, J. Yang, H. Jiang, "Thermoacoustic tomography of in vivo rat brain," J. Innov. Opt. Health Sci. 10, 1740001 (2017), doi: 10.1142/S1793545817400016.

    [54] L. Huang, T. Li, H. Jiang, "Thermoacoustic imaging of hemorrhagic stroke: A feasibility study with a human skull brain," Med. Phys. 44, 1494-1499 (2017), doi: 10.1002/mp.12138.

    [55] Z. Chi, Y. Zhao, L. Huang, Z. Zheng, H. Jiang, "Thermoacoustic imaging of rabbit knee joints," Med. Phys. 43(12), 6226-6233 (2016), doi: 10.1118/1.4966031.

    [56] L. Huang, J. Rong, L. Yao, W. Z. Qi, D. Wu, J. Y. Xu, H. Jiang, "Quantitative thermoacoustic tomoraphy for ex vivo imaging conductivity of breast tissue," Chin. Phys. Lett. 30, 124301 (2013), doi: 10.1088/0256-307X/30/12/124301.

    [57] L. Huang, L. Yao, L. Liu, J. Rong, H. Jiang, "Quantitative thermoacoustic tomography: recovery of conductivity maps of heterogeneous media," Appl. Phys. Lett. 101, 244106 (2012), doi: 10.1063/1.4772484.

    [58] L. Yao, G. Guo, H. Jiang, "Quantitative microwave-induced thermoacoustic tomography," Med. Phys. 37, 3752-3759 (2010), doi: 10.1118/1.3456926.

    [59] Z. Zheng, H. Jiang, "Thermoacoustic elastography: Recovery of bulk elastic modulus of heterogeneous media using tomographically measured thermoacoustic measurements," Quant. Imaging Med. Surg. 9, 625-635 (2019), doi: 10.21037/qims.2019.03.18.

    [60] X. Wang, L. Huang, Z. H. Chi, H. Jiang, "Microwave-induced thermoacoustic tomography for imaging human thyroid," Prog. Biochem. Biophys. 46 (2019), doi: 10.16476/j.pibb.2018.0234.

    [61] X. Wang, T. Qin, Y. Qin, A. H. Abdelrahman, R. S. Witte, H. Xin, "Microwave-induced thermoacoustic imaging for embedded explosives detection in high-water content medium," IEEE Trans. Antennas Propag. 67, 4803-4810 (2019), doi: 10.1109/TAP.2019.2908267.

    [62] R. S. Witte, H. Xin, "Thermoacoustic and photoacoustic characterizations of few-layer graphene by pulsed excitations," Appl. Phys. Lett. 108, 143104(2016), doi: 10.1063/1.4945661.

    [63] X. Wang, T. Qin, R. S. Witte, H. Xin, "Computational feasibility study of contrast-enhanced thermoacoustic imaging for breast cancer detection using realistic numerical breast phantoms," IEEE Trans. Microw. Theory Tech. 63, 1489-1501 (2015), doi: 10.1109/TMTT.2015.2417866.

    [64] R. S. Witte, "Non-contact thermoacoustic imaging based on laser and microwave vibrometry," IEEE Int. Ultrasonics Symp. Proc. pp. 1033-1036 (2014), doi: 10.1109/ULTSYM.2014.0253.

    [65] X. Wang, D. R. Bauer, J. L. Vollin, D. G. Manzi, R. S. Witte, H. Xin, "Impact of microwave pulses on thermos-acoustic imaging applications," IEEE Antennas Wirel. Propag. Lett. 11, 1634-1637 (2012), doi: 10.1109/LAWP.2013. 2237743.

    [66] R. S. Witte, C. Karunakaran, A. N. Zuniga, H. Schmitz, H. Arif, "Frontiers of cancer imaging and guided therapy using ultrasound, light, and micro-waves," Clin. Exp. Metastasis 35, 413-418 (2018), doi: 10.1007/s10585-018-9923-9.

    [67] X. Wang, T. Qin, Y. Qin, R. S. Witte, H. Xin, "Microwave-induced thermoacoustic communications," IEEE Trans. Microw. Theory Tech. 65, 3369-3378 (2017), doi: 10.1109/TMTT.2017.2669970.

    [68] T. Qin, X. Wang, Y. Qin, G. Wan, R. S. Witte, H. Xin, "Quality improvement of thermoacoustic imaging based on compressive sensing," IEEE Antennas Wirel. Propag. Lett. 14, 1200-1203 (2015), doi: 10.1109/LAWP.2015.2397952.

    [69] T. Qin, X. Wang, Y. Qin, P. Ingram, G. Wan, R. S. Witte, H. Xin, "Experimental validation of a numerical model for thermoacoustic imaging applications," IEEE Antennas Wirel. Propag. Lett. 14, 1235-1238 (2015), doi: 10.1109/LAWP.2014.2384022.

    [70] X. Wang, H. Xin, D. R. Bauer, R. S. Witte, "Computational study of thermosacoustic imaging for breast cancer detection using a realistic breast model," IEEE Antennas and Propagation Society International Symp. pp. 2040-2041 (2013), doi: 10.1109/APS.2013.6711678.

    [71] X. Wang, D. R. Bauer, R. S. Witte, H. Xin, "Microwave-induced Thermoacoustic imaging model for potential breast cancer detection," IEEE Trans. Biomed. Eng. 59, 2782-2791 (2012), doi: 10.1109/TBME.2012.2210218.

    [72] D. R. Bauer, X. Wang, J. Vollin, H. Xin, R. S. Witte, "Spectroscopic thermoacoustic imaging of water and fat composition," Appl. Phys. Lett. 101, 033705 (2012), doi: 10.1063/1.4737414.

    [73] C. Yuan, B. Qin, H. Qin, D. Xing, "Increasing dielectric loss of a graphene oxide nanoparticle to enhance the microwave thermoacoustic imaging contrast of breast tumor," Nanoscale 11, 22222-22229 (2019), doi: 10.1039/C9NR06549K.

    [74] Y. Li, Q. Tan, H. Qin, D. Xing, "Defect-rich singlelayer MoS2 nanosheets with high dielectric-loss for contrast-enhanced thermoacoustic imaging of breast tumor," Appl. Phys. Lett. 115, 073701 (2019), doi: 10.1063/1.5111892.

    [75] Y. Zhao, Z. Ji, B. Qin, D. Xing, "A thermoacoustic imaging system with variable curvature and multidimensional detection adapted to breast tumor screening," J. Appl. Phys. 124, 144902 (2018), doi: 10.1063/1.5042121.

    [76] L. Wen, S. Yang, J. Zhong, Q. Zhou, D. Xing, "Thermoacoustic imaging and therapy guidance based on ultra-short pulsed microwave pumped thermoelastic effect induced with superparamagnetic iron oxide nano-particles," Theranostics 7, 1976-1989 (2017), doi: 10.7150/thno.17846.

    [77] F. Ye, Z. Ji, W. Ding, C. Lou, S. Yang, D. Xing, "Ultrashort microwave-pumped real-time thermoacoustic breast tumor imaging system," IEEE Trans. Med. Imag. 35, 839-844 (2016), doi: 10.1109/TMI.2015.2497901.

    [78] W. Ding, C. Lou, J. Qiu, Z. Zhao, Q. Zhou, M. Liang, Z. Ji, S. Yang, D. Xing, "Targeted Fe-filled carbon nanotube as a multifunctional contrast agent for thermoacoustic and magnetic resonance imaging of tumor in living mice," Nanomedicine 12, 235-244 (2016), doi: 10.1016/j.nano.2015.08.008.

    [79] Z. Ji, Y. Fu, S. Yang, "Microwave-induced thermoacoustic imaging for early breast cancer detection," Innov. Opt. Health Sci. 6, 1350001 (2013), doi: 10.1142/S1793545813500016.

    [80] H. Qin, S. Yang, D. Xing, "Microwave-induced thermoacoustic computed tomography with a clinical contrast agent of NMG(2)Gd(DTPA)," Appl. Phys. Lett. 100, 033701 (2012), doi: 10.1063/1.3678022.

    [81] C. Lou, S. Yang, Z. Ji, Q. Chen, D. Xing, "Ultrashort microwave-induced thermoacoustic imaging: A breakthrough in excitation e±ciency and spatial resolution," Phys. Rev. Lett. 109, 218101 (2012), doi: 10.1103/PhysRevLett. 109.218101.

    [82] Z. Ji, C. Lou, S. Yang, D. Xing, "Three-dimensional thermoacoustic imaging for early breast cancer detection," Med. Phys. 39, 6738-6744 (2012), doi: 10.1118/1.4757923.

    [83] L. Nie, Z. Ou, S. Yang, D. Xing, "Thermoacoustic molecular tomography with magnetic nanoparticle contrast agents for targeted tumor detection," Med. Phys. 37, 4193-4200 (2010), doi: 10.1118/1.3466696.

    [84] L. Nie, D. Xing, S. Yang, "In vivo detection and imaging of low-density foreign body with microwave-induced thermoacoustic tomography," Med. Phys. 36, 3429-3437 (2009), doi: 10.1118/1.3157204.

    [85] L. Nie, D. Xing, D. Yang, L. Zeng, Q. Zhou, "Detection of foreign body using fast thermoacoustic tomography with a multi-element linear transducer array," Appl. Phys. Lett. 90, 174109-174111 (2007), doi: 10.1063/1.2732824.

    [86] Q. Luo, L. Zeng, D. Xing, D. Yang, S. Yang, L. Xiang, L. V. Wang, V. V. Tuchin, M. Gu, "Limited-view scanning microwave-induced thermoacoustic CT using a multi-element linear transducer array," Proc. SPIE 6534, 653431-6534318 (2007), doi: 10.1117/12.741450.

    [87] L. Zeng, D. Xing, H. Gu, D. Yang, "A fast microwave-induced thermoacoustic tomography system for imaging of biological tissues," Proc. SPIE 6047, 60470K (2006), doi: 10.1117/12.709956.

    [88] C. Cao, D. Xing, L. M. Nie, "Microwave-induced thermoacoustic tomography for detecting negative kidney calculus," 2009 Conf. Lasers & Electro Optics & The Pacific Rim Conf. Lasers and Electro-Optics IEEE, pp. 1-2 (2009), doi: 10.1109/CLEOPR.2009.5292641.

    [89] W. Luo, Z. Ji, S. Yang, D. Xing, "Microwavepumped electric-dipole resonance absorption for noninvasive functional imaging," Phys. Rev. Appl. 10, 0240441 (2018), doi: 10.1103/PhysRevApplied.10.024044.

    [90] L. Zhang, H. Qin, F. C. Zeng, Z. J. Wu, L. H. Wu, S. X. Zhao, D. Xing, "Stimulated liquid-gas phase transition nanoprobe dedicated to enhance microwave thermoacoustic imaging contrast of breast tumor," Nanoscale 12, 16034-16040 (2020), doi: 10.1039/D0NR04441E.

    [91] Y. Huang, S. Kellnberger, G. Sergiadis, V. Ntziachristos, "Blood vessel imaging using radiofrequency-induced second harmonic acoustic response," Sci. Rep. 8, 15522 (2018), doi: 10.1038/s41598-018-33732-0.

    [92] S. Kellnberger, M. Omar, G. Sergiadis, V. Ntziachristos, "Second harmonic acoustic responses induced in matter by quasi continuous radiofrequency fields," Appl. Phys. Lett. 103(15), 153706 (2013), doi: 10.1063/1.4824709.

    [93] M. Omar, S. Kellnberger, G. Sergiadis, D. Razansky, V. Ntziachristos, "Near-field thermoacoustic imaging with transmission line pulsers," Med. Phys. 39, 4460-4466 (2012), doi: 10.1118/1.4729710.

    [94] S. Kellnberger, A. Hajiaboli, D. Razansky, V. Ntziachristos, "Near-field thermoacoustic tomography of small animals," Phys. Med. Biol. 56, 3433-3444 (2011), doi: 10.1088/0031-9155/56/11/016.

    [95] D. Razansky, S. Kellnberger, V. Ntziachristos, "Near-field radio-frequency thermoacoustic tomography with impulse excitation," Med. Phys. 37, 4602-4607 (2010), doi: 10.1097/00000539-200010000-00069.

    [96] X. Zhu, Z. Zhao, J. Wang, J. Song, Q. Liu, "Microwave-induced thermal acoustic tomography for breast tumor based on compressive sensing," IEEE Trans. Biomed. Eng. 60, 1298-1307 (2013), doi: 10.1109/TBME.2012.2233737.

    [97] Z. Zhao, J. Song, X. Zhu, J. Wang, J. Wu, "System development of microwave induced thermo-acoustic tomography and experiments on breast tumor," Prog. Electromagn. Res. 134, 323-336 (2013), doi: 10.2528/Pier12101604.

    [98] S. Liu, Z. Zheng, X. Sun, Z. Zhao, Y. Zheng, H. Jiang, X. Zhu, Q. Liu, "Reducing acoustic inhomogeneity based on speed of sound autofocus in microwave induced thermoacoustic tomography," IEEE Trans. Biomed. Eng. 67, 2206-2214 (2019), doi: 10.1109/TBME.2019. 2957535.

    [99] S. Liu, Z. Zhao, Y. Lu, B. Wang, Z. Nie, Q. Liu, "Microwave induced thermoacoustic tomography based on probabilistic reconstruction," Appl. Phys. Lett. 112, 263701 (2018), doi: 10.1063/1.5034485.

    [100] B. Wang, Z. Zhao, S. Liu, Z. Nie, Q. Liu, "Mitigating acoustic heterogeneous effects in microwave-induced breast thermoacoustic tomography using multiphysical K-means clustering," Appl. Phys. Lett. 111, 223701 (2017), doi: 10.1063/1.5008839.

    [101] S. Liu, Z. Zhao, X. Zhu, Y. Lu, B. Wang, Z. Nie, Q. Liu, "Block based compressive sensing method of microwave induced thermoacoustic tomography for breast tumor detection," J. Appl. Phys. 122, 024702 (2017), doi: 10.1063/1.4994168.

    [102] J. Wang, Z. Zhao, J. Song, G. Chen, Z. Nie, Q. Liu, "Reducing the effects of acoustic heterogeneity with an iterative reconstruction method from experimental data in microwave induced thermoacoustic tomography," Med. Phys. 42, 2103-2112 (2015), doi: 10.1118/1.4916660.

    [103] J. Song, Z. Zhao, J.Wang, X. Zhu, J.Wu, Z. Nie, Q. Liu, "Evaluation of contrast enhancement by carbon nanotubes for microwave-induced thermoacoustic tomography," IEEE Trans. Biomed. Eng. 62, 930-938 (2015), doi: 10.1109/TBME.2014.2373397.

    [104] X. Zhu, Z. Zhao, J. Wang, G. Chen, Q. Liu, "Active adjoint modeling method in microwave induced thermoacoustic tomography for breast tumor," IEEE Trans. Biomed. Eng. 61, 1957-1966 (2014), doi: 10.1109/TBME.2014.2309912.

    [105] B. Wang, Z. Zhao, X. Zhu, J. Song, J. Wang, Z. Nie, Q. Liu, "Hierarchical dictionary compressive sensing (HDCS) method in microwave induced thermal acoustic tomography," Biomed. Signal Process. Control 14(1), 148-157 (2014), doi: 10.1016/j.bspc.2014.07.012.

    [106] Z. Ji, W. Ding, F. Ye, C. Lou, Handheld "Thermoacoustic scanning system based on a linear-array transducer," Ultrason. Imag. 38, 1-9 (2015), doi: 10.1177/0161734615601987.

    [107] Y. Fu, Z. Ji, W. Ding, F. Ye, C. Lou, "Thermoacoustic imaging over large field of view for three-dimensional breast tumor localization: A phantom study," Med. Phys. 41, 110701 (2014), doi: 10.1118/1.4898101.

    [108] A. Singhvi, K. C. Boyle, M. Fallahpour, B. T. Khuri-Yakub, A. Arbabian, "A microwave-induced thermoacoustic imaging system with non-Contact ultrasound detection," IEEE Trans. Ultrason. Ferroelectr. Freq. Control 66, 1587-1599 (2019), doi: 10.1109/TUFFC.2019.2925592.

    [109] H. Nan, S. Liu, J. G. Buckmaster, A. Arbabian, "Beamforming microwave-induced thermoacoustic imaging for screening applications," IEEE Trans. Microw. Theory Tech. 67, 464-474 (2019), doi: 10.1109/TMTT.2018.2880901.

    [110] M. S. Aliroteh, A. Arbabian, "Microwave-Induced thermoacoustic imaging of subcutaneous vasculature with near-field RF excitation," IEEE Trans. Ultrason. Ferroelectr. Freq. Control 66, 577-588 (2018), doi: 10.1109/TMTT.2017. 2714664.

    [111] H. Nan, K. C. Boyle, N. Apte, M. S. Aliroteh, A. Bhuyan, A. Nikoozadeh, B. T. Khuri-Yakub, A. Arbabian, "Non-contact thermoacoustic detection of embedded targets using airborne-capacitive micromachined ultrasonic transducers," Appl. Phys. Lett. 106, 084101 (2015), doi: 10.1063/1.4909508.

    [112] H. Nan, A. Arbabian, "Peak-power-limited frequency domain microwave-induced thermoacoustic imaging for handheld diagnostic and screening tools," IEEE Trans. Microw. Theory Tech. 65, 2607-2616 (2017), doi: 10.1109/TMTT.2016.2637909.

    [113] H. Nan, A. Arbabian, "Stepped-frequency continuous-wave microwave-induced thermoacoustic imaging," Appl. Phys. Lett. 104, 224104 (2014), doi: 10.1063/1.4879841.

    [114] H. Nan, T. C. Chou, A. Arbabian, "Segmentation and artifact removal in microwave-induced thermoacoustic imaging," The 36th Annual Int. Conf. IEEE Engineering in Medicine and Biology Society, pp. 4747-4750 (2014), doi: 10.1109/EMBC.2014.6944685.

    [115] O. Ogunlade, B. Cox, P. Beard, "Quantitative thermoacoustic image reconstruction of conductivity profiles," Proc. SPIE 8223, 82230R (2012), doi: 10.1117/12.908858.

    [116] O. Ogunlade, P. Beard, "Exogenous contrast agents for thermoacoustic imaging: An investigation into the underlying sources of contrast," Med. Phys. 42, 170-180 (2015), doi: 10.1118/1.4903277.

    [117] A. A. Oraevsky, L. V. Wang, O. Ogunlade, P. Beard, "Electric and magnetic properties of contrast agents for thermoacoustic imaging," Proc. SPIE 8943, 89432V (2014), doi: 10.1117/12.2040051.

    [118] X. Liang, H. Guo, Q. Liu, C. Wu, Y. Gong, L. Xi, "Thermoacoustic endoscopy," Appl. Phys. Lett. 116, 013702 (2020), doi: 10.1063/1.5126880.

    [119] M. Pramanik, G. Ku, C. Li, L. V. Wang, "Design and evaluation of a novel breast cancer detection system combining both thermoacoustic (TA) and photoacoustic (PA) tomography," Med. Phys. 35, 2218-2223 (2008), doi: 10.1118/1.2911157.

    [120] Y. Huang, M. Omar, W. Tian, H. Lopez-Schie, G. G. Westmeyer, A. G. Chmyrov, G. Sergiadis, V. Ntziachristos, "Noninvasive visualization of electrical conductivity in tissues at the micrometer scale," Sci. Adv. 7, eabd1505 (2021), doi: 10.1126/sciadv.abd1505.

    [121] M. Mrozowski, M. Okoniewski, E. Okoniewska, M. A. Stuchly, "Human organs dosimetry for transient electromagnetic fields," IEEE MTT-S Int. Microwave Symp. Digest, pp. 95-97 (1997), doi: 10.1109/MWSYM.1997.604529.

    [122] R. A. Kruger, P. Y. Liu, "Photoacoustic ultrasound: Pulse production and detection in 0.5% Liposyn," Med. Phys. 21, 1179-1184 (1994), doi: 10.1118/1.597399.

    [123] F. Xu, Z. Ji, Q. Chen, S. H. Yang, D. Xing, "Nonlinear thermoacoustic imaging based on temperature- dependent thermoelastic response," IEEE T. Med. Imag. 38, 205-212 (2019), doi: 10.1109/TMI.2018.2859437.

    [124] H. P. Schwan, "Electrical properties of tissue and cell suspensions," Adv. Biol. Med. Phys. 5, 147-209 (1958), doi: 10.1016/B978-1-4832-3111-2.50008-0.

    [125] K. R. Foster, J. L. Schepps, R. D. Stoy, H. P. Schwan, "Dielectric properties of brain tissue between 0-01 and l0 GHz," Phys. Med. Biol. 24, 1177-1187 (1979), doi: 10.1088/0031-9155/24/6/008.

    [126] W. T. Joines, Y. Zhang, C. Li, R. L. Jirtle, "The measured electrical properties of normal and malignant human tissues from 50 to 900MHz," Med. Phys. 21, 547-550 (1994), doi: 10.1118/1.597312.

    [127] D. Zhang, B. Wang, X. Wang, "Enhanced and modulated microwave- induced thermoacoustic imaging by ferromagnetic resonance," Appl. Phys. Express 12, 077001 (2019), doi: 10.7567/1882-0786/ab265d.

    [128] Y. S. Chen, Y. Zhao, C. Beinat, A. Zlitni, E. C. Hsu, D. H. Chen, F. Achterberg, H. Wang, T. Stoyanova, J. Dionne, S. S. Gambhir, "Ultrahigh-frequency radio-frequency acoustic molecular imaging with saline nanodroplets in living subjects," Nat. Nanotechol. 16, 717-724 (2021), doi: 10.1038/s41565-021-00869-5.

    [129] S. Alikhani, M. A. Ansari, A. R. Niknam, "Simulation of thermoacoustic resonance response of tumor by finite element method," J. Appl. Phys. 126, 174701 (2019) doi: 10.1063/1.5096330.

    [130] B. W. Wang, X. P. Ma, S. L. Liu, X. Z. Zhu, "E±cient dictionary construction method for microwave induced thermoacoustic compressive sensing imaging," Appl. Phys. Lett. 113, 053701 (2018), doi: 10.1063/1.5042293.

    [131] X. Liang, Q. Liu, Z. Z. Sun, W. Z. Qi, Y. B. Gong, L. Xi, "Investigation of artifacts by mapping SAR in thermoacoustic imaging," J. Innov. Opt. Health Sci. 2150011, 1-10 (2021), doi: 10.1142/S1793545821500115.

    [132] C. Lou, L. Nie, D. Xu, "Effect of excitation pulse width on thermoacoustic signal characteristics and the corresponding algorithm for optimization of imaging resolution," J. Appl. Phys. 110, 083101 (2011), doi: 10.1063/1.3651636.

    [133] X. Zeng, S. Yan, G. Wang, "Effects of microwave pulse width on the spatial resolution of microwaveinduced thermoacoustic imaging," 2006 7th Int. Symp. Antennas, Propagation & EM Theory, Guilin pp. 1-4 (2006), doi: 10.1109/ISAPE.2006.353278.

    [134] L. Zhang, "Research on preparation and property of alternating multilayer polymer electromagnetic shielding materials," Appl. Mech. Mater. 443, 634-638 (2014), doi: 10.4028/www.scientific.net/AMM.443.634.

    [135] IEEE standard for safety levels with respect to human exposure to radio frequency electromagnetic fields, 3 kHz to 300 GHz. The Institute of Electrical and Electronics Engineers (2005), doi: 10.1109/IEEESTD.2006.99501.

    [136] "International Commission on Non-Ionizing Radiation Protection guidelines for limiting exposure to electromagnetic fields (100 kHz to 300 GHz)," Health Phys. 118, 483-524 (2020), doi: 10.1097/HP.0000000000001210.

    [137] Guideline of the Austrian Medical Association for the diagnosis and treatment of EMF related health problems and illnesses EMF syndrome, Consensus paper of the Austrian Medical Association's EMF Working Group Vienna (2012).

    [138] Controlling Limits For Electromagnetic Environments, Environ-mental Protection Agency of China, General Administration of Quality Supervision, Inspection and Quaran-tine of China (2015).

    [139] J. N. Li, B. S. Wang, D. J. Zhang, C. Z. Li, Y. H. Zhu, Y. Zou, B. L. Chen, T. Wu, X. Wang, A "Preclinical system prototype for focused microwave breast hyperthermia guided by compressive thermoacoustic tomography," IEEE T. Bio-Med. Eng. 68, 2289-2300 (2021), doi: 10.1109/TBME.2021.3059869.

    [140] L. F. Xu, X. Wang, "Focused microwave breast hyperthermia monitored by thermoacoustic imaging: A computational feasibility study applying realistic breast phantoms," IEEE J. Electromag. RF Microw. Med. Biol. 4, 81-88 (2020), doi: 10.1109/JERM.2019.2931623.

    [141] M. T. K. Kubo, E. S. Siguemoto, P. E. Funcia, P. E. Augusto, S. Curet, L. Boillerreaux, S. K. Sastry, J. A. Gut, "Non-thermal effects of microwave and ohmic processing on microbial and enzyme inactivation: A critical review," Curr. Opin. Food Sci. 35, 36-48 (2020), doi: 10.1016/j.cofs.2020.01.004.

    [142] H. Nornikman, F. Malek, P. J. Soh, A. A. H. Azremi, F. H. Wee, A. Hasnain, "Parametric study of pyramidal microwave absorber using rice husk," Prog. Electroman. Res. 104, 145-166 (2010), doi: 10.2528/pier10041003.

    [143] P. Saini, M. Arora, "Microwave absorption and EMI shielding behavior of nanocomposites based on intrinsically conducting polymers, graphene and carbon nanotubes, new polymers for special applications," Intech Open Science Chap. 3, pp. 71-112 (2012).

    [144] W. Gong, G. Chen, Z. Zhao, Z. Nie, "Estimation of threshold noise suppression algorithm in microwave induced thermoacoustic tomography," 2009 Asia Pacific Microwave Conf. pp. 653-656 (2009), doi: 10.1109/APMC.2009. 5384135.

    [145] L. Lan, Y. M. Li, T. Yang-Tran, Y. Jiang, Y. C. Cao, J. X. Cheng, "Ultrae±cient thermoacoustic conversion through a split ring resonator," Adv. Photon. 2, 036006 (2020), doi: 10.1117/1.AP.2.3.036006.

    [146] A. Hati, C. W. Nelson, "W-band vibrometer for noncontact thermoacoustic imaging," IEEE Trans. Ultrason. Ferroelectr. Freq. Control 66, 1536-1539 (2019), doi: 10.1109/TUFFC.2019.2923909.

    [147] Z. Ji, W. Ding, F. Ye, C. Lou, D. Xing, "Shapeadapting thermoacoustic imaging system based on °exible multi-element transducer," Appl. Phys. Lett. 107, 094104 (2015), doi: 10.1063/1.4929881.

    [148] M. Haltmeier, T. Schuster, O. Scherzer, "Filtered backprojection for thermoacoustic computed tomography in spherical geometry," Math. Methods Appl. Sci. 28(16),1919-1937 (2005), doi: 10.1002/mma.648.

    [149] B. Rafaely, "Phase-mode versus delay-and-sum spherical microphone array processing," IEEE Signal Process. Lett. 12, 713-716 (2005), doi: 10.1109/LSP.2005.855542.

    [150] T. J. Yoon, Y. S. Cho, "Recent advances in photoacoustic endoscopy," World J. Gastrointest. Endosc. 5(11), 534-539 (2013), doi: 10.5411/wji.v5.i11.534.

    [151] Y. S. Cui, C. Yuan, Z. Ji, "A review of microwaveinduced thermoacoustic imaging: Excitation source, data acquisition system and biomedical applications," J. Innov. Opt. Health Sci. 10, 1730007 (2017), doi: 10.1142/S1793545817300075.

    [152] K. Ravina, L. Lin, C. Y. Liu, D. Thomas, D. Hasson, L. V. Wang,, J. J. Russin, "Prospects of photo- and thermoacoustic imaging in neurosurgery," Neurosurgery 87, 11-24 (2020), doi: 10.1093/neuros/nyz420.

    [153] C. Tian, C. X. Zhang, H. R. Zhang, D. Xie, Y. Jin, "Spatial resolution in photoacoustic computed tomography," Rep. Prog. Phys. 84, 036701 (2021), doi: 10.1088/1361-6633/abdab9.

    [154] B. Huang, K. Maslov, L. V. Wang, "Photoacoustic and thermoacoustic imaging with a multichannel breast scanner," Proc. SPIE 8223, 822309 (2012), doi: 10.1117/12.906779.

    [155] M. Pramanik, G. Ku, L. V. Wang, "Tangential resolution improvement in thermoacoustic and photoacoustic tomography using a negative acoustic lens," J. Biomed. Opt. 14, 024028 (2009), doi: 10.1117/1.3103778.

    [156] S. K. Kalva, M. Pramanik, "Experimental validation of tangential resolution improvement in photoacoustic tomography using a modified delay-andsum reconstruction algorithm," J. Biomed. Opt. 21, 086011 (2016), doi: 10.1117/1.JBO.21.8.086011.

    [157] M. Pramanik, "Improving tangential resolution with a modified delay-and-sum reconstruction algorithm in photoacoustic and thermoacoustic tomography," J. Opt. Soc. Am. A 31, 621-627 (2014), doi: 10.1364/josaa.31.000621.

    [158] P. Rajendran, M. Pramanik, "Deep learning approach to improve tangential resolution in photoacoustic tomography," Biomed. Opt. Express 11, 7311-7323 (2020), doi: 10.1364/BOE.410145.

    [159] N. A. Rejesh, M. Pramanik, "Photoacoustic and thermoacoustic signal characteristics study," Proc. SPIE 8800, 88000G (2013), doi: 10.1117/12.2031963.

    [160] B. Wang, N. Xiong, Y. Sun, L. Zhang, C. Li, J. Li, Z. Wang, Z. Chen, Y. Zhang, X. Wang, "Microwave-induced thermoacoustic imaging of small animals applying scanning orthogonal polarization excitation," IEEE J. Electromagn., RF, Microw. Med. Biol. 6, 123-130 (2022), doi: 10.1109/JERM.2021.3079719.

    [161] Q. Song, Z. Wang, B. Wang, L. Zhang, X. Wang, "Multiple back projection with impact factor algorithm based on circular scanning for microwaveinduced thermoacoustic tomography," IEEE J. Electromagn., RF, Microw. Med. Biol. (2022), doi: 10.1109/JERM.2021.3102381.

    [162] S. Liu, Y. Lu, X. Zhu, H. Jin, "Measurement matrix uncertainty model-based microwave induced thermoacoustic sparse reconstruction in acoustically heterogeneous media," Appl. Phys. Lett. 119, 263701 (2021), doi: 10.1063/5.0076449.

    [163] Z. Liang, W. Wang, S. Qiao, L. Huang, "Study on response of metal wire in thermoacoustic imaging," J. Innov. Opt. Health Sci. 10, 2250015 (2022), doi: 10.1142/S1793545822500158.

    [164] C. L. James, "The microwave auditory effect," IEEE J. Electromagn., RF, Microw. Med. Biol. 6, 16-28 (2022), doi: 10.1109/JERM.2021.3062826.

    [165] Z. Chi, X. Liang, X. Wang, L. Huang, H. Jiang, "Detection and monitoring of osteoporosis in a rat model by thermoacoustic tomography," IEEE J. Electromagn., RF, Microw. Med. Biol. 4, 234-239 (2020), doi: 10.1109/JERM.2020.2964152.

    [166] Z. Chi, L. Huang, X. Long, X. Xu, H. Jiang, "First assessment of thermoacoustic tomography for in vivo detection of rheumatoid arthritis in the finger joints," Med. Phys. 49, 84-92 (2022), doi: 10.1002/mp.15340.

    [167] C. Sutardja, A. Singhvi, A. Fitzpatrick, A. Cathelin, A. Arbabian, "Multi-watt-level 4.9-GHz silicon power amplifier for portable thermoacoustic imaging," IEEE J. Solid-State Circuits (2022), doi: 10.1109/JSSC.2022.3149910.

    [168] S. Zhao, H. Wang, Y. Li, L. Nie, S. Zhang, D. Xing, "Ultrashort-pulse-microwave excited whole-breast thermoacoustic imaging with uniform field of large size aperture antenna for tumor screening," IEEE. Trans. Biomed. Eng. 69, 729-733 (2022), doi: 10.1109/TBME.2021.3104137.

    [169] H. Wang, Y. Ma, S. Zhao, Y. Li, L. Wu, H. Qin, D. Xing, "Fabry-Perot interference principle-based non-contact thermoacoustic imaging system for breast tumor screening," Appl. Phys. Lett. 119, 143701 (2021), doi: 10.1063/5.0062879.

    [170] L. Wu, Z. Cheng, Y. Ma, Y. Li, M. Ren, D. Xing, H. Qin, "A handheld microwave thermoacoustic imaging system with an impedance matching microwave-sono probe for breast tumor screening," IEEE Trans. Med. Imag. (2022), doi: 10.1109/TMI.2021.3131423.

    [171] Y. Sun, C. Li, B. Wang, X. Wang, "A low-cost compressive thermoacoustic tomography system for hot and cold foreign bodies detection," IEEE Sensors J. 21, 23588-23596 (2021), doi: 10.1109/JSEN.2021.3109349.

    [172] B. Wang, Y. Sun, C. Li, Z. Wang, X. Wang, "2-D Noninvasive temperature measurement of biological samples based on compressive thermoacoustic tomography," IEEE J. Electromagn. RF, Microw. Med. Biol. 5, 371-378 (2021), doi: 10.1109/JERM.2021.3102843.

    [173] B. Wang, Y. Sun, C. Li, Z. Wang, X. Wang, "Three-dimensional microwave-induced thermoacoustic imaging based on compressive sensing using an analytically constructed dictionary," IEEE Trans. Microw. Theory Tech. 38, 378-386 (2020), doi: 10.1109/TMTT.2019.2936568.

    [174] Q. Xu, Z. Zheng, H. Jiang, "Deep learning for image reconstruction in thermoacoustic tomography," Chin. Phys. B 31, 024302 (2022), doi: 10.1088/1674-1056/ac0dab.

    [175] J. Zhang, C. Li, W. Jiang, Z. Wang, L. Zhang, X. Wang, "Deep-learning-enabled Microwaveinduced thermoacoustic tomography based on sparse data for breast cancer detection," IEEE Trans. Antennas Propag. (2022), doi: 10.1109/TAP. 2022. 3159680.

    [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese]. Biomedical microwave-induced thermoacoustic imaging[J]. Journal of Innovative Optical Health Sciences, 2022, 15(4): 2230007
    Download Citation