• Chinese Journal of Lasers
  • Vol. 52, Issue 7, 0700001 (2025)
Lukui Xu, Zixiong Fan, Luwei Wang, Yong Guo..., Yinru Zhu, Xinwei Gao, Wei Yan* and Junle Qu|Show fewer author(s)
Author Affiliations
  • State Key Laboratory of Radio Frequency Heterogeneous Integration (Shenzhen University), Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, Guangdong, China
  • show less
    DOI: 10.3788/CJL241363 Cite this Article Set citation alerts
    Lukui Xu, Zixiong Fan, Luwei Wang, Yong Guo, Yinru Zhu, Xinwei Gao, Wei Yan, Junle Qu. Advances and Future Trends in Photolithography and Photoresist Materials[J]. Chinese Journal of Lasers, 2025, 52(7): 0700001 Copy Citation Text show less
    References

    [1] Garner C M[J]. Lithography for enabling advances in integrated circuits and devices, 370, 4015-4041(2012).

    [2] Wong C Y, Yeung H W C, Huang S P et al. Geopolitics and the changing landscape of global value chains and competition in the global semiconductor industry: rivalry and catch-up in chip manufacturing in East Asia[J]. Technological Forecasting and Social Change, 209, 123749(2024).

    [3] Zozulia A, Bolk J, van Veldhoven R et al. Nanophotonic integrated active-passive InP membrane devices and circuits fabricated using ArF scanner lithography[J]. Micro and Nano Engineering, 23, 100258(2024).

    [4] Kim J W, Chmielak B, Lerch H et al. Fabrication of photonic integrated circuits in silicon nitride using substrate conformal imprint lithography[J]. Microelectronic Engineering, 176, 11-14(2017).

    [5] Rius G, Llobet J, Arcamone J et al. Electron- and ion-beam lithography for the fabrication of nanomechanical devices integrated on CMOS circuits[J]. Microelectronic Engineering, 86, 1046-1049(2009).

    [6] Ma S L, Wu T X, Chen X Y et al. An artificial neural network chip based on two-dimensional semiconductor[J]. Science Bulletin, 67, 270-277(2022).

    [7] Bansal M, Garg S. Internet of things (IoT) based assistive devices[C], 1006-1009(2021).

    [8] Barredo Arrieta A, Díaz-Rodríguez N, del Ser J et al. Explainable artificial intelligence (XAI): concepts, taxonomies, opportunities and challenges toward responsible AI[J]. Information Fusion, 58, 82-115(2020).

    [9] Garcia I S, Retolaza A, Ferreira C et al. Nanoimprint lithography for grayscale pattern replication of MEMS mirrors in a 200 mm wafer[J]. Journal of Manufacturing Processes, 116, 202-209(2024).

    [10] Huang J, Jiang L, Li X W et al. Controllable photonic structures on silicon-on-insulator devices fabricated using femtosecond laser lithography[J]. ACS Applied Materials & Interfaces, 13, 43622-43631(2021).

    [11] Lemma E D, Spagnolo B, de Vittorio M et al. Studying cell mechanobiology in 3D: the two-photon lithography approach[J]. Trends in Biotechnology, 37, 358-372(2019).

    [12] Choi J, Kim S. Microscopic projection lithography for integrating metallic microstructures on silk protein for biodevice applications[J]. ACS Biomaterials Science & Engineering, 9, 6390-6397(2023).

    [13] Streefkerk B, Baselmans J, Gehoel-van Ansem W et al. Extending optical lithography with immersion[J]. Proceedings of SPIE, 5377, 285-305(2004).

    [14] Wagner C, Harned N. Lithography gets extreme[J]. Nature Photonics, 4, 24-26(2010).

    [15] Ronse K G, Jonckheere R, Gallagher E et al. EUVL is being inserted in manufacturing in 2019: what are the mask related challenges remaining?[J]. Proceedings of SPIE, 11177, 111770A(2019).

    [16] Crivello J V, Reichmanis E. Photopolymer materials and processes for advanced technologies[J]. Chemistry of Materials, 26, 533-548(2014).

    [17] Hassaan M, Saleem U, Singh A et al. Recent advances in positive photoresists: mechanisms and fabrication[J]. Materials, 17, 2552(2024).

    [18] Nemani K V, Moodie K L, Brennick J B et al. In vitro and in vivo evaluation of SU-8 biocompatibility[J]. Materials Science and Engineering: C, 33, 4453-4459(2013).

    [19] Ghosh S, Pradeep C P, Sharma S K et al. Recent advances in non-chemically amplified photoresists for next generation IC technology[J]. RSC Advances, 6, 74462-74481(2016).

    [20] Rehab A. New photosensitive polymers as negative photoresist materials[J]. European Polymer Journal, 34, 1845-1855(1998).

    [21] Škriniarová J, Pudiš D, Andok R et al. Investigation of the AZ 5214E photoresist by the laser interference, EBDW and NSOM lithographies[J]. Applied Surface Science, 395, 226-231(2017).

    [22] Vlnieska V, Mikhaylov A, Zakharova M et al. Epoxy resins for negative tone photoresists[J]. Polymers, 11, 1457(2019).

    [23] Zhao H F, Zhou Z H, Zhang L. Research progress and prospects of extreme ultraviolet photoresists[J]. Chinese Journal of Lasers, 51, 1801002(2024).

    [24] Mojarad N, Gobrecht J, Ekinci Y. Beyond EUV lithography: a comparative study of efficient photoresists' performance[J]. Scientific Reports, 5, 9235(2015).

    [25] Wang X L, Tao P P, Wang Q Q et al. Trends in photoresist materials for extreme ultraviolet lithography: a review[J]. Materials Today, 67, 299-319(2023).

    [26] Stocker M P, Li L J, Gattass R R et al. Multiphoton photoresists giving nanoscale resolution that is inversely dependent on exposure time[J]. Nature Chemistry, 3, 223-227(2011).

    [27] Liaros N, Fourkas J T. Methods for determining the effective order of absorption in radical multiphoton photoresists: a critical analysis[J]. Laser & Photonics Reviews, 15, 2000203(2021).

    [28] Sivun D, Murtezi E, Karimian T et al. Multiphoton lithography with protein photoresists[J]. Materials Today Bio, 25, 100994(2024).

    [29] Liu L F, Song K T, Feng T et al. Towards environmentally friendly processing of ionic liquid-based photoresists with a boosted lithography performance[J]. Green Chemistry, 25, 5989-5998(2023).

    [30] Li B, He M H, Ramirez L et al. Multifunctional hydrogel microparticles by polymer-assisted photolithography[J]. ACS Applied Materials & Interfaces, 8, 4158-4164(2016).

    [31] Garcia I S, Ferreira C, Santos J D et al. Fabrication of a MEMS micromirror based on bulk silicon micromachining combined with grayscale lithography[J]. Journal of Microelectromechanical Systems, 29, 734-740(2020).

    [32] Wang Y D, Zhang M Y, Lai Y K et al. Advanced colloidal lithography: from patterning to applications[J]. Nano Today, 22, 36-61(2018).

    [33] Leuschel B, Gwiazda A, Heni W et al. Deep-UV photoinduced chemical patterning at the micro- and nanoscale for directed self-assembly[J]. Scientific Reports, 8, 10444(2018).

    [34] Stehlin F, Wieder F, Spangenberg A et al. Room-temperature preparation of metal-oxide nanostructures by DUV lithography from metal-oxo clusters[J]. Journal of Materials Chemistry C, 2, 277-285(2014).

    [35] Endert H, Pätzel R, Powell M et al. New KrF and ArF excimer laser for advanced DUV lithography[J]. Microelectronic Engineering, 27, 221-224(1995).

    [36] Palazon F, Akkerman Q A, Prato M et al. X-ray lithography on perovskite nanocrystals films: from patterning with anion-exchange reactions to enhanced stability in air and water[J]. ACS Nano, 10, 1224-1230(2016).

    [37] Li Z J, Yin B H, Sun B T et al. Real-time generation of circular patterns in electron beam lithography[J]. Nanotechnology and Precision Engineering, 7, 033009(2024).

    [38] Rothschild M. Projection optical lithography[J]. Materials Today, 8, 18-24(2005).

    [39] Zhong Y, Yu H B, Zhou P L et al. Patterned microsphere-lens projection lithography using an electrohydrodynamic-jet-printing-assisted assembly[J]. Photonics Research, 12, 1502-1512(2024).

    [40] Brainard R L, Barclay G G, Anderson E H et al. Resists for next generation lithography[J]. Microelectronic Engineering, 61, 707-715(2002).

    [41] Das R N, Bolkhovsky V, Wynn A et al. Extremely large area (88 mm  ×  88 mm) superconducting integrated circuit (ELASIC)[J]. Scientific Reports, 13, 11796(2023).

    [42] Dieleman C D, Ding W Y, Wu L J et al. Universal direct patterning of colloidal quantum dots by (extreme) ultraviolet and electron beam lithography[J]. Nanoscale, 12, 11306-11316(2020).

    [43] Constantinou P, Stock T J Z, Tseng L T et al. EUV-induced hydrogen desorption as a step towards large-scale silicon quantum device patterning[J]. Nature Communications, 15, 694(2024).

    [44] Koshelev K, Krivtsun V, Ivanov V et al. New type of discharge-produced plasma source for extreme ultraviolet based on liquid tin jet electrodes[J]. Journal of Micro/Nanolithography, 11, 021103(2012).

    [45] Chen Y Y, Zhao C X, Pan Q K et al. Experimental study on the temporal evolution parameters of laser-produced tin plasma under different laser pulse energies for LPP‒EUV source[J]. Photonics, 10, 1339(2023).

    [46] Giannopoulos I, Mochi I, Vockenhuber M et al. Extreme ultraviolet lithography reaches 5 nm resolution[J]. Nanoscale, 16, 15533-15543(2024).

    [47] Chen Y F. Nanofabrication by electron beam lithography and its applications: a review[J]. Microelectronic Engineering, 135, 57-72(2015).

    [48] Zhao R B, Wang X L, Wei Y Y et al. Machine learning applied to electron beam lithography to accelerate process optimization of a contact hole layer[J]. ACS Applied Materials & Interfaces, 16, 22465-22470(2024).

    [49] Sin Tan Y, Wang H, Wang H T et al. High-throughput fabrication of large-scale metasurfaces using electron-beam lithography with SU-8 gratings for multilevel security printing[J]. Photonics Research, 11, B103-B110(2023).

    [50] Dieleman C D, van der Burgt J, Thakur N et al. Direct patterning of CsPbBr3 nanocrystals via electron-beam lithography[J]. ACS Applied Energy Materials, 5, 1672-1680(2022).

    [51] Li Y S, Chen Y X, Fang H G et al. Electron-beam writing of a relaxor ferroelectric polymer for multiplexing information storage and encryption[J]. Nanoscale, 16, 180-187(2023).

    [52] Quarshie M M, Malykhin S, Obraztsov A et al. Nano- and micro-crystalline diamond film structuring with electron beam lithography mask[J]. Nanotechnology, 35, 155301(2024).

    [53] Gour J, Beer S, Paul P et al. Wafer-scale nanofabrication of sub-5 nm gaps in plasmonic metasurfaces[J]. Nanophotonics, 13, 4191-4202(2024).

    [54] Jeon H, Song S, Park S et al. Solvent-free microfabrication of thin film device using the focused ion beam[J]. Current Applied Physics, 63, 1-6(2024).

    [55] Chappert C, Bernas H, Ferré J et al. Planar patterned magnetic media obtained by ion irradiation[J]. Science, 280, 1919-1922(1998).

    [56] Salvador-Porroche A, Herrer L, Sangiao S et al. High-throughput direct writing of metallic micro- and nano-structures by focused Ga+ beam irradiation of palladium acetate films[J]. ACS Applied Materials & Interfaces, 14, 28211-28220(2022).

    [57] Chen Y Q, Bi K X, Wang Q J et al. Rapid focused ion beam milling based fabrication of plasmonic nanoparticles and assemblies via “sketch and peel” strategy[J]. ACS Nano, 10, 11228-11236(2016).

    [58] He S X, Tian R, Wu W et al. Helium-ion-beam nanofabrication: extreme processes and applications[J]. International Journal of Extreme Manufacturing, 3, 012001(2021).

    [59] Kwon D S, Choi H Y, Lee B M et al. Electrothermal application of novolac-derived carbon micropatterns prepared by proton beam lithography and carbonization[J]. Applied Surface Science, 471, 328-334(2019).

    [60] Bruenger W H, Dietzel A H, Loeschner H. Ion projection surface structuring with noble gas ions at 75 keV[J]. Surface and Coatings Technology, 201, 8437-8441(2007).

    [61] Lee S Y, Noh D Y, Lee H C et al. Direct-write X-ray lithography using a hard X-ray Fresnel zone plate[J]. Journal of Synchrotron Radiation, 22, 781-785(2015).

    [62] Andreev M, Marmiroli B, Schennach R et al. Patterning a cellulose based dual-tone photoresist via deep X-ray lithography[J]. Microelectronic Engineering, 256, 111720(2022).

    [63] Mino L, Bonino V, Alessio A et al. Improving the control of the electroforming process in oxide-based memristive devices by X-ray nanopatterning[J]. Journal of Materials Chemistry C, 12, 11127-11132(2024).

    [64] Sharma E, Rathi R, Misharwal J et al. Evolution in lithography techniques: microlithography to nanolithography[J]. Nanomaterials, 12, 2754(2022).

    [65] Kalaiselvi S M P, Tang E X, Moser H O et al. Wafer scale manufacturing of high precision micro-optical components through X-ray lithography yielding 1800 gray levels in a fingertip sized chip[J]. Scientific Reports, 12, 2730(2022).

    [66] Guo L J. Nanoimprint lithography: methods and material requirements[J]. Advanced Materials, 19, 495-513(2007).

    [67] Liang X G, Jung Y S, Wu S W et al. Formation of bandgap and subbands in graphene nanomeshes with sub-10 nm ribbon width fabricated via nanoimprint lithography[J]. Nano Letters, 10, 2454-2460(2010).

    [68] Chen S, Gu Y, Lin J Q et al. Study on vibration-assisted thermal nanoimprint lithography[J]. Applied Nanoscience, 10, 3315-3324(2020).

    [69] Dinachali S S, Saifullah M S M, Ganesan R et al. A universal scheme for patterning of oxides via thermal nanoimprint lithography[J]. Advanced Functional Materials, 23, 2201-2211(2013).

    [70] Alnakhli Z, Liu Z Y, AlQatari F et al. UV-assisted nanoimprint lithography: the impact of the loading effect in silicon on nanoscale patterns of metalens[J]. Nanoscale Advances, 6, 2954-2967(2024).

    [71] Bhingardive V, Menahem L, Schvartzman M. Soft thermal nanoimprint lithography using a nanocomposite mold[J]. Nano Research, 11, 2705-2714(2018).

    [72] Ahn S H, Guo L J. High-speed roll-to-roll nanoimprint lithography on flexible plastic substrates[J]. Advanced Materials, 20, 2044-2049(2008).

    [73] Wang P H, Zheng H Y, Liu Y H et al. Low-dispersive silicon nitride waveguide resonators by nanoimprint lithography[J]. APL Photonics, 9, 086107(2024).

    [74] Rathnayaka C, Chandrosoma I A, Choi J et al. Detection and identification of single ribonucleotide monophosphates using a dual in-plane nanopore sensor made in a thermoplastic via replication[J]. Lab on a Chip, 24, 2721-2735(2024).

    [75] Sölle B, Reisinger D, Heupl S et al. Reshapable bio-based thiol-ene vitrimers for nanoimprint lithography: advanced covalent adaptability for tunable surface properties[J]. Reactive and Functional Polymers, 202, 105972(2024).

    [76] Zhang H Q, Gan J, Wu Y et al. Biomimetic high water adhesion superhydrophobic surface via UV nanoimprint lithography[J]. Applied Surface Science, 633, 157610(2023).

    [77] Zhan Y J, Deng L G, Dai W et al. Fabrication of large-area nanostructures using cross-nanoimprint strategy[J]. Nanomaterials, 14, 998(2024).

    [78] Balena A, Bianco M, Pisanello F et al. Recent advances on high-speed and holographic two-photon direct laser writing[J]. Advanced Functional Materials, 33, 2211773(2023).

    [79] Geladari O, Haizmann P, Maier A et al. Direct laser induced writing of high precision gold nanosphere SERS patterns[J]. Nanoscale Advances, 6, 1213-1217(2024).

    [80] Mačiulaitis J, Deveikytė M, Rekštytė S et al. Preclinical study of SZ2080 material 3D microstructured scaffolds for cartilage tissue engineering made by femtosecond direct laser writing lithography[J]. Biofabrication, 7, 015015(2015).

    [81] Hou Z W, Liu S F, Lin L H et al. Research progress on femtosecond laser 3D printing technology of inorganic materials (invited)[J]. Chinese Journal of Lasers, 51, 1202404(2024).

    [82] Jonušauskas L, Pautienius A, Ežerskytė E et al. Femtosecond laser-made 3D micro-chainmail scaffolds towards regenerative medicine[J]. Optics & Laser Technology, 162, 109240(2023).

    [83] Wang H, Zhang W, Ladika D et al. Two-photon polymerization lithography for optics and photonics: fundamentals, materials, technologies, and applications[J]. Advanced Functional Materials, 33, 2214211(2023).

    [84] Jaiswal A, Rastogi C K, Rani S et al. Two decades of two-photon lithography: materials science perspective for additive manufacturing of 2D/3D nano-microstructures[J]. iScience, 26, 106374(2023).

    [85] Dobos A, Gantner F, Markovic M et al. On-chip high-definition bioprinting of microvascular structures[J]. Biofabrication, 13, 015016(2021).

    [86] Zhao H T, Su S H, Li C et al. Research progress on two-photon polymerization printing three-dimensional photonic crystals (invited)[J]. Chinese Journal of Lasers, 51, 1202402(2024).

    [87] Adam G, Benouhiba A, Rabenorosoa K et al. 4D printing: enabling technology for microrobotics applications[J]. Advanced Intelligent Systems, 3, 2000216(2021).

    [88] Jaiswal A, Rani S, Singh G P et al. Rapid additive manufacturing of all-carbon, all-dielectric metastructures[J]. Additive Manufacturing, 84, 104091(2024).

    [89] Yang S H, Su C Y, Gu S Y et al. Parallel two-photon lithography achieving uniform sub-200 nm features with thousands of individually controlled foci[J]. Optics Express, 31, 14174-14184(2023).

    [90] Rani S, Das R K, Jaiswal A et al. 4D nanoprinted sensor for facile organo-arsenic detection: a two-photon lithography-based approach[J]. Chemical Engineering Journal, 454, 140130(2023).

    [91] Prediger R, Sriyotha N, Schell K G et al. Two-photon polymerization of nanocomposites for additive manufacturing of transparent magnesium aluminate spinel ceramics[J]. Advanced Science, 11, 2307175(2024).

    [92] Jin F, Liu J, Zhao Y Y et al. λ/30 inorganic features achieved by multi-photon 3D lithography[J]. Nature Communications, 13, 1357(2022).

    [93] Garcia R, Knoll A W, Riedo E. Advanced scanning probe lithography[J]. Nature Nanotechnology, 9, 577-587(2014).

    [94] Liu G Y, Xu S, Qian Y L. Nanofabrication of self-assembled monolayers using scanning probe lithography[J]. Accounts of Chemical Research, 33, 457-466(2000).

    [95] Yang G H, Amro N A, Liu G Y. Scanning probe lithography of self-assembled monolayers[J]. Proceedings of SPIE, 5220, 52-65(2003).

    [96] Zimmermann S T, Balkenende D W R, Lavrenova A et al. Nanopatterning of a stimuli-responsive fluorescent supramolecular polymer by thermal scanning probe lithography[J]. ACS Applied Materials & Interfaces, 9, 41454-41461(2017).

    [97] Komonov A I, Mantsurov N D, Voloshin B V et al. Nanopatterning of thin amorphous vanadium oxide films by oxidation scanning probe lithography[J]. Applied Surface Science, 658, 159869(2024).

    [98] Reuter C, Ecke G, Strehle S. Exploring the surface oxidation and environmental instability of 2H-/1T’-MoTe2 using field emission-based scanning probe lithography[J]. Advanced Materials, 36, 2310887(2024).

    [99] Lee C H, Chang G, Kim J et al. Concurrent optimization of diffraction fields from binary phase mask for three-dimensional nanopatterning[J]. ACS Photonics, 10, 919-927(2023).

    [100] Kwak M K, Ok J G, Lee J Y et al. Continuous phase-shift lithography with a roll-type mask and application to transparent conductor fabrication[J]. Nanotechnology, 23, 344008(2012).

    [101] Singh N, Agarwal A, Bera L K et al. High-performance fully depleted silicon nanowire (diameter ≤5 nm) gate-all-around CMOS devices[J]. IEEE Electron Device Letters, 27, 383-386(2006).

    [102] Du J L, Cui Z, Yuan X C et al. Investigation of phase shift mask distortion effect[J]. Microelectronic Engineering, 61, 265-270(2002).

    [103] Leeson M. Extreme ultraviolet-embedded phase-shift mask[J]. Journal of Micro/Nanolithography, 10, 033011(2011).

    [104] Chen J T, Zhao Y Y, Zhang Y et al. Label-free neural networks-based inverse lithography technology[J]. Optics Express, 30, 45312-45326(2022).

    [105] Li C, Dong L S, Wei Y Y. SCAPSM: attenuated phase-shift mask structure for EUV lithography[J]. Applied Optics, 63, 2263-2270(2024).

    [106] Gao F, Liu F Y, Ye Z R et al. Phase shifting mask modulated laser patterning on graphene[J]. Nanotechnology, 28, 045304(2017).

    [107] Hua F, Shi J, Lvov Y et al. Patterning of layer-by-layer self-assembled multiple types of nanoparticle thin films by lithographic technique[J]. Nano Letters, 2, 1219-1222(2002).

    [108] Yang W, Chen M, Knoll W et al. Synthesis of hexanedithiolate/decanethiolate mixed monolayer protected gold clusters and scanning tunneling microscope tip induced patterning on the clusters/Au(111) surface[J]. Langmuir, 18, 4124-4130(2002).

    [109] Wang M G, Xue T, Miao H et al. High χ P2PFBEMA-b-P2VP block copolymers forming 6‒8 nm domains for semiconductor lithography[J]. ACS Applied Materials & Interfaces, 16, 31586-31596(2024).

    [110] Maekawa S, Seshimo T, Dazai T et al. Chemically tailored block copolymers for highly reliable sub-10-nm patterns by directed self-assembly[J]. Nature Communications, 15, 5671(2024).

    [111] Denk W, Strickler J H, Webb W W. Two-photon laser scanning fluorescence microscopy[J]. Science, 248, 73-76(1990).

    [112] Hell S W, Wichmann J. Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy[J]. Optics Letters, 19, 780-782(1994).

    [113] Gan Z S, Cao Y Y, Evans R A et al. Three-dimensional deep sub-diffraction optical beam lithography with 9 nm feature size[J]. Nature Communications, 4, 2061(2013).

    [114] Wollhofen R, Katzmann J, Hrelescu C et al. 120 nm resolution and 55 nm structure size in STED-lithography[J]. Optics Express, 21, 10831-10840(2013).

    [115] Xie F, Song S C, Liang L L et al. Sub-100 nm pixel pitch via STED photolithography with a nanoprinting-at-expansion/employments-at-recovery strategy[J]. Optics Express, 31, 2892-2901(2023).

    [116] He X L, Li T L, Zhang J et al. Sted direct laser writing of 45 nm width nanowire[J]. Micromachines, 10, 726(2019).

    [117] Li X P, Cao Y Y, Tian N et al. Multifocal optical nanoscopy for big data recording at 30 TB capacity and gigabits/second data rate[J]. Optica, 2, 567-570(2015).

    [118] Fischer J, von Freymann G, Wegener M. The materials challenge in diffraction-unlimited direct-laser-writing optical lithography[J]. Advanced Materials, 22, 3578-3582(2010).

    [119] Liaros N, Fourkas J T. Ten years of two-color photolithography [invited][J]. Optical Materials Express, 9, 3006-3020(2019).

    [120] Cao Y Y, Gan Z S, Jia B H et al. High-photosensitive resin for super-resolution direct-laser-writing based on photoinhibited polymerization[J]. Optics Express, 19, 19486-19494(2011).

    [121] van der Laan H L, Burns M A, Scott T F. Volumetric photopolymerization confinement through dual-wavelength photoinitiation and photoinhibition[J]. ACS Macro Letters, 8, 899-904(2019).

    [122] Müller P, Müller R, Hammer L et al. STED-inspired laser lithography based on photoswitchable spirothiopyran moieties[J]. Chemistry of Materials, 31, 1966-1972(2019).

    [123] Liaros N, Tomova Z, Gutierrez R et al. The state of the art in multicolor visible photolithography[J]. Proceedings of SPIE, 10584, 1058407(2018).

    [124] Fourkas J T, Tomova Z. Multicolor, visible-light nanolithography[J]. Proceedings of SPIE, 9426, 94260C(2015).

    [125] Klar T A, Jakobs S, Dyba M et al. Fluorescence microscopy with diffraction resolution barrier broken by stimulated emission[J]. Proceedings of the National Academy of Sciences of the United States of America, 97, 8206-8210(2000).

    [126] Scott T F, Kowalski B A, Sullivan A C et al. Two-color single-photon photoinitiation and photoinhibition for subdiffraction photolithography[J]. Science, 324, 913-917(2009).

    [127] Li L J, Gattass R R, Gershgoren E et al. Achieving λ/20 resolution by one-color initiation and deactivation of polymerization[J]. Science, 324, 910-913(2009).

    [128] Klar T A, Wollhofen R, Jacak J. Sub-Abbe resolution: from STED microscopy to STED lithography[J]. Physica Scripta, 162, 014049(2014).

    [129] Guan L L, Cao C, Liu X et al. Light and matter co-confined multi-photon lithography[J]. Nature Communications, 15, 2387(2024).

    [130] Beckham J L, Li J T, Stanford M G et al. High-resolution laser-induced graphene from photoresist[J]. ACS Nano, 15, 8976-8983(2021).

    [131] Zhang Y H, Yu H J, Wang L et al. Advanced lithography materials: from fundamentals to applications[J]. Advances in Colloid and Interface Science, 329, 103197(2024).

    [132] Sahu V, Dewangan P, Vardhan R V et al. Fabrication of microchannels and through-holes in Borofloat glass using Cr thin film with positive photoresist as the masking layer through wet etching[J]. Materials Today Communications, 41, 110352(2024).

    [133] Xiang S L, Luo P F, Ren Y Y et al. Photodegradable polyurethane resist with high photosensitivity based on hexaarylbiimidazole molecule photoswitch[J]. ACS Applied Polymer Materials, 6, 2496-2503(2024).

    [134] Vazquez I R, Guler Z, Jackson N. Enhancing manufacturability of SU-8 piezoelectric composite films for microsystem applications[J]. Micromachines, 15, 397(2024).

    [135] Yang Y, Lai L Y, Ding G F et al. SiC nanowire-based SU-8 with enhanced mechanical properties for MEMS structural layer design[J]. Nanotechnology and Precision Engineering, 2, 169-176(2019).

    [136] Naqvi B A, Enomoto S, Machida K et al. Extreme ultraviolet lithographic performance and reaction mechanism of polymeric resist: utilizing radical- and acid-amplified cross-linking[J]. Chemistry of Materials, 36, 1459-1471(2024).

    [137] Yu H M, Liu S S, Fu H Y et al. POSS and PAG dual-containing chemically amplified photoresists by RAFT polymerization for enhanced thermal performance and acid diffusion inhibition[J]. Applied Sciences, 14, 7722(2024).

    [138] Fu C B, Du K, Xue J et al. Mechanisms of acid generation from ionic photoacid generators for extreme ultraviolet and electron beam lithography[J]. Physical Chemistry Chemical Physics, 26, 18547-18556(2024).

    [139] Zhang S L, Chen L, Gao J X et al. Chemically amplified molecular glass photoresist regulated by 2-aminoanthracene additive for electron beam lithography and extreme ultraviolet lithography[J]. ACS Omega, 8, 26739-26748(2023).

    [140] Thakur N, Reddy P G, Nandi S et al. New non-chemically amplified molecular resist design with switchable sensitivity for multi-lithography applications and nanopatterning[J]. Journal of Micromechanics and Microengineering, 27, 125010(2017).

    [141] Wang Z H, Chen J P, Yu T J et al. Water developable non-chemically amplified photoresist for electron beam and extreme ultraviolet lithography[J]. Journal of Micro/Nanopatterning, 21, 041403(2022).

    [142] Belmonte G K, Cendron S W, Reddy P G et al. Mechanistic insights of Sn-based non-chemically-amplified resists under EUV irradiation[J]. Applied Surface Science, 533, 146553(2020).

    [143] Canalejas-Tejero V, Carrasco S, Navarro-Villoslada F et al. Ultrasensitive non-chemically amplified low-contrast negative electron beam lithography resist with dual-tone behaviour[J]. Journal of Materials Chemistry C, 1, 1392-1398(2013).

    [144] Singh V, Satyanarayana V S V, Sharma S K et al. Towards novel non-chemically amplified (n-CARS) negative resists for electron beam lithography applications[J]. Journal of Materials Chemistry C, 2, 2118-2122(2014).

    [145] Cui X W, Zhang S L, Cong X et al. A novel non-chemically amplified resist based on polystyrene-iodonium derivatives for electron beam lithography[J]. Nanotechnology, 35, 295302(2024).

    [146] de Silva A, Lee J K, André X et al. Study of the structure: properties relationship of phenolic molecular glass resists for next generation photolithography[J]. Chemistry of Materials, 20, 1606-1613(2008).

    [147] de Silva A, Sundberg L K, Ito H et al. A fundamental study on dissolution behavior of high-resolution molecular glass photoresists[J]. Chemistry of Materials, 20, 7292-7300(2008).

    [148] Yang D, Chang S W, Ober C K. Molecular glass photoresists for advanced lithography[J]. Journal of Materials Chemistry, 16, 1693-1696(2006).

    [149] Bauer W A C, Neuber C, Ober C K et al. Combinatorial optimization of a molecular glass photoresist system for electron beam lithography[J]. Advanced Materials, 23, 5404-5408(2011).

    [150] Pfeiffer F, Felix N M, Neuber C et al. Physical vapor deposition of molecular glass photoresists: a new route to chemically amplified patterning[J]. Advanced Functional Materials, 17, 2336-2342(2007).

    [151] Zhang L H, Marsiglio J A, Lan T et al. Dramatic tunability of the glass transition temperature and fragility of low molecular weight polystyrene by initiator fragments located at chain ends[J]. Macromolecules, 49, 2387-2398(2016).

    [152] Chen J P, Hao Q S, Wang S Q et al. Molecular glass resists based on 9, 9’-spirobifluorene derivatives: pendant effect and comprehensive evaluation in extreme ultraviolet lithography[J]. ACS Applied Polymer Materials, 1, 526-534(2019).

    [153] Porter L A, Ribbe A E, Buriak J M. Metallic nanostructures via static plowing lithography[J]. Nano Letters, 3, 1043-1047(2003).

    [154] Jiang J, Chakrabarty S, Yu M F et al. Metal oxide nanoparticle photoresists for EUV patterning[J]. Journal of Photopolymer Science and Technology, 27, 663-666(2014).

    [155] Marques-Hueso J, Morton J A S, Wang X F et al. Photolithographic nanoseeding method for selective synthesis of metal-catalysed nanostructures[J]. Nanotechnology, 30, 015302(2019).

    [156] Dong X G, Shao Y A, Ping H H et al. Effect of metal oxide deposition on the sensitivity and resolution of E-beam photoresist[J]. ACS Applied Materials & Interfaces, 16, 56019-56030(2024).

    [157] Qiao Y, Shi G Y, Zhang O et al. Heterometallic Ti‒Zr oxo nanocluster photoresists for advanced lithography[J]. Science China Materials, 67, 3132-3141(2024).

    [158] Wang D H, Xu R F, Zhou D H et al. Zn‒Ti oxo cluster photoresists for EUV lithography: cluster structure and lithographic performance[J]. Chemical Engineering Journal, 493, 152315(2024).

    [159] Si Y M, Zhao Y D, Shi G Y et al. A novel stable zinc‒oxo cluster for advanced lithography patterning[J]. Journal of Materials Chemistry A, 11, 4801-4807(2023).

    [160] Du T L, Yang X W, Zhao Y Y et al. Tin-oxo nanoclusters for extreme ultraviolet photoresists: effects of ligands, counterions, and doping[J]. The Journal of Chemical Physics, 160, 154307(2024).

    [161] Xu H, Sakai K, Kasahara K et al. Metal-organic framework-inspired metal-containing clusters for high-resolution patterning[J]. Chemistry of Materials, 30, 4124-4133(2018).

    [162] Lee J, Jo H, Choi M et al. Recent progress on quantum dot patterning technologies for commercialization of QD-LEDs: current status, future prospects, and exploratory approaches[J]. Small Methods, 8, 2301224(2024).

    [163] Guo W S, Chen J, Ma T et al. Direct photolithography patterning of quantum dot-polymer[J]. Advanced Functional Materials, 34, 2310338(2024).

    [164] Lee G H, Kim K, Kim Y et al. Recent advances in patterning strategies for full-color perovskite light-emitting diodes[J]. Nano-Micro Letters, 16, 45(2023).

    [165] Fischer A J, Anderson P D, Koleske D D et al. Deterministic placement of quantum-size controlled quantum dots for seamless top-down integration[J]. ACS Photonics, 4, 2165-2170(2017).

    [166] Myeong S, Chon B, Kumar S et al. Quantum dot photolithography using a quantum dot photoresist composed of an organic-inorganic hybrid coating layer[J]. Nanoscale Advances, 4, 1080-1087(2022).

    [167] Qiu Y Y, Yu Y X, Wang S S et al. Advances in quantum dot direct photolithographic patterning[J]. ACS Materials Letters, 6, 3176-3189(2024).

    [168] Yun T, Kim Y B, Lee T et al. Direct 3D-printed CdSe quantum dots via scanning micropipette[J]. Nanoscale Advances, 5, 1070-1078(2022).

    [169] Wang Y Y, Pan J A, Wu H Q et al. Direct wavelength-selective optical and electron-beam lithography of functional inorganic nanomaterials[J]. ACS Nano, 13, 13917-13931(2019).

    [170] Li T H, Zhang P P, Wei S S et al. Polymerizable monomer solvents enabled direct in situ photolithography of perovskite quantum dots[J]. Advanced Optical Materials, 12, 2400486(2024).

    [171] Park Y, Song S W, Hong J et al. Si-containing reverse-gradient block copolymer for inorganic pattern amplification in EUV lithography[J]. ACS Macro Letters, 13, 943-950(2024).

    [172] Sakai K, Jung S H, Pan W Y et al. Metal organic cluster photoresists for EUV lithography[J]. Journal of Photopolymer Science and Technology, 32, 711-714(2019).

    [173] Cong X, Zhang S L, Gao J X et al. Novel etch-resistant molecular glass photoresist based on pyrene derivatives for electron beam lithography[J]. ACS Omega, 9, 37585-37595(2024).

    [174] Moinuddin M G, Kumar R, Yogesh M et al. Functionalized Ag nanoparticles embedded in polymer resists for high-resolution lithography[J]. ACS Applied Nano Materials, 3, 8651-8661(2020).

    [175] Yang Z H, Zhao J, Cai Y J et al. Synthesis of micro-crosslinked adamantane-containing matrix resins designed for deep-UV lithography resists and their application in nanoimprint lithography[J]. Nanoscale, 16, 11651-11662(2024).

    [176] Cao C, Shen X M, Chen S X et al. High-precision and rapid direct laser writing using a liquid two-photon polymerization initiator[J]. ACS Applied Materials & Interfaces, 15, 30870-30879(2023).

    [177] Guo X Y, Zhou Q Y, Fan X F et al. Heteroatom/heterocycle-substituted ketone dyes as efficient photoinitiators in visible light-emitting diode/near infrared light photopolymerization with enhanced two-photon lithography capability[J]. ACS Applied Polymer Materials, 6, 5566-5575(2024).

    [178] Servin I, Teolis A, Bazin A F et al. Chitosan as a water-based photoresist for DUV lithography[J]. Proceedings of SPIE, 12498, 1249818(2023).

    [179] Qin X H, Wang X P, Rottmar M et al. Near-infrared light-sensitive polyvinyl alcohol hydrogel photoresist for spatiotemporal control of cell-instructive 3D microenvironments[J]. Advanced Materials, 30, 1705564(2018).

    [180] Servin I, Teolis A, Bazin A et al. Water-soluble bio-sourced resists for DUV lithography in a 200/300 mm pilot line environment[J]. Micro and Nano Engineering, 19, 100202(2023).

    [181] Rothammer M, Zollfrank C. Photocrosslinkable cellulose derivatives for the manufacturing of all-cellulose-based architectures[J]. Polymers, 16, 9(2023).

    [182] Evrard Q, Sadegh N, Mathew S et al. Extreme ultraviolet photoresponse of organotin-based photoresists with borate counteranions[J]. ACS Applied Materials & Interfaces, 16, 42947-42956(2024).

    [183] Au T H, Trinh D T, Tong Q C et al. Direct laser writing of magneto-photonic sub-microstructures for prospective applications in biomedical engineering[J]. Nanomaterials, 7, 105(2017).

    [184] Yi M, Wang J, Li A et al. Conductive micropatterns containing photoinduced in situ reduced graphene oxide prepared by ultraviolet photolithography[J]. Advanced Materials Technologies, 8, 2201939(2023).

    [185] Peng S D, Lei X N, Sun S Z et al. Magnetic-driven micro-gear pair fabricated by femtosecond laser writing[J]. Advanced Engineering Materials, 26, 2301960(2024).

    [186] Xiong Z, Zheng C L, Jin F et al. Magnetic-field-driven ultra-small 3D hydrogel microstructures: preparation of gel photoresist and two-photon polymerization microfabrication[J]. Sensors and Actuators B: Chemical, 274, 541-550(2018).

    [187] Barhum H, Kolchanov D S, Attrash M et al. Thin-film conformal fluorescent SU8-phenylenediamine[J]. Nanoscale, 15, 17544-17554(2023).

    [188] Kim B, Kumar S, Chon B et al. Facile microfluidic synthesis of monodispersed size-controllable quantum dot (QD) microbeads using custom developed QD photoresist[J]. Nanoscale, 15, 17473-17481(2023).

    [189] Tang J, Xu X Y, Shen X M et al. Ketocoumarin-based photoinitiators for high-sensitivity two-photon lithography[J]. ACS Applied Polymer Materials, 5, 2956-2963(2023).

    [190] Geka G, Papageorgiou G, Chatzichristidi M et al. CuO/PMMA polymer nanocomposites as novel resist materials for E-beam lithography[J]. Nanomaterials, 11, 762(2021).

    [191] Du K, Siauw M, Valade D et al. Control of presentation of functional ultraviolet absorbers to the surface of photoresist polymers using low surface energy polymers[J]. Chemistry of Materials, 36, 5264-5276(2024).

    [192] Hanzawa M, Ogura T, Akamatsu M et al. Enhanced removal of photoresist films through swelling and dewetting using pluronic surfactants[J]. Langmuir, 39, 14670-14679(2023).

    [193] Lenhart J L, Fischer D, Sambasivan S et al. Understanding deviations in lithographic patterns near interfaces: characterization of bottom anti-reflective coatings (BARC) and the BARC‒resist interface[J]. Applied Surface Science, 253, 4166-4175(2007).

    [194] Fallah K, Norouzian Alam S, Ghaffary B et al. Enhancement of the environmental stability of perovskite thin films via AZ5214-photoresist and PMMA coatings[J]. Optical Materials Express, 14, 2083-2094(2024).

    [195] Kotz F, Arnold K, Wagner S et al. Liquid PMMA: a high resolution polymethylmethacrylate negative photoresist as enabling material for direct printing of microfluidic chips[J]. Advanced Engineering Materials, 20, 1700699(2018).

    [196] Arunachalam S, Izquierdo R, Nabki F. Ionization gas sensor using suspended carbon nanotube beams[J]. Sensors, 20, 1660(2020).

    [197] Kawata H, Nakamura N, Sakai H et al. High power light source for future extreme ultraviolet lithography based on energy-recovery linac free-electron laser[J]. Journal of Micro/Nanopatterning, 21, 021210(2022).

    [198] Sizyuk V, Sizyuk T, Hassanein A. Temporal pre-pulse shaping in dual pulse laser produced plasma for the optimization of the EUV source in tin microdroplet system[J]. Journal of Applied Physics, 135, 093101(2024).

    [199] Sysova O, Durin P, Gablin C et al. Chitosan as a water-developable 193 nm photoresist for green photolithography[J]. ACS Applied Polymer Materials, 4, 4508-4519(2022).

    [200] Grebenko A, Bubis A, Motovilov K et al. Green lithography for delicate materials[J]. Advanced Functional Materials, 31, 2101533(2021).

    Lukui Xu, Zixiong Fan, Luwei Wang, Yong Guo, Yinru Zhu, Xinwei Gao, Wei Yan, Junle Qu. Advances and Future Trends in Photolithography and Photoresist Materials[J]. Chinese Journal of Lasers, 2025, 52(7): 0700001
    Download Citation