• Journal of Innovative Optical Health Sciences
  • Vol. 14, Issue 6, 2150022 (2021)
Di Yang, Zhuoqun Yuan, Zihan Yang, Muyun Hu, and Yanmei Liang*
Author Affiliations
  • Institute of Modern Optics, Nankai University Tianjin Key Laboratory of Micro-scale Optical Information Science and Technology, Tianjin 300350, P. R. China
  • show less
    DOI: 10.1142/s179354582150022x Cite this Article
    Di Yang, Zhuoqun Yuan, Zihan Yang, Muyun Hu, Yanmei Liang. High-resolution polarization-sensitive optical coherence tomography and optical coherence tomography angiography for zebrafish skin imaging[J]. Journal of Innovative Optical Health Sciences, 2021, 14(6): 2150022 Copy Citation Text show less
    References

    [1] G. Broughton 2nd, J. E. Janis, C. E. Attinger, "The basic science of wound healing," Plast. Reconstr. Surg. 117(7S), 12S–34S (2006).

    [2] G. C. Gurtner, S. Werner, Y. Barrandon, M. T. Longaker, "Wound repair and regeneration," Nature 453(7193), 314–321 (2008).

    [3] K. E. Johnson, T. A. Wilgus, "Vascular endothelial growth factor and angiogenesis in the regulation of cutaneous wound repair," Adv. Wound Care 3(10), 647–661 (2014).

    [4] R. Richardson, K. Slanchev, C. Kraus, P. Knyphausen, S. Eming, M. Hammerschmidt, "Adult zebrafish as a model system for cutaneous woundhealing research," J. Invest. Dermatol. 133(6), 1655–1665 (2013).

    [5] F. Bootorabi, H. Manouchehri, R. Changizi, H. Barker, E. Palazzo, A. Saltari, M. Parikka, C. Pincelli, A. Aspatwar, "Zebrafish as a model organism for the development of drugs for skin cancer," Int. J. Mol. Sci. 18(7), 1550 (2017).

    [6] C. Noishiki, S. Yuge, K. Ando, Y. Wakayama, N. Mochizuki, R. Ogawa, S. Fukuhara, "Live imaging of angiogenesis during cutaneous wound healing in adult zebrafish," Angiogenesis 22(2), 341–354 (2019).

    [7] R. Richardson, M. Metzger, P. Knyphausen, T. Ramezani, K. Slanchev, C. Kraus, E. Schmelzer, M. Hammerschmidt, "Re-epithelialization of cutaneous wounds in adult zebrafish combines mechanisms of wound closure in embryonic and adult mammals," Development 143(12), 2077–2088 (2016).

    [8] M. Iwasaki, J. Kuroda, K. Kawakami, H. Wada, "Epidermal regulation of bone morphogenesis through the development and regeneration of osteoblasts in the zebrafish scale," Dev. Biol. 437 (4), 105–119 (2018).

    [9] D. E. Dalle Nogare, N. Natesh, H. D. Vishwasrao, H. Shro?, A. B. Chitnis, "Zebrafish posterior lateral line primordium migration requires interactions between a superficial sheath of motile cells and the skin," Elife 9, e58251 (2020).

    [10] J. Delcourt, M. Ovidio, M. Deno?l, M. Muller, H. Pendeville, J.-L. Deneubourg, P. Poncin, "Individual identification and marking techniques for zebrafish," Rev. Fish Biol. Fisher. 28(4), 839– 864 (2018).

    [11] H. Li, K. Liu, L. Yao, X. Deng, Z. Zhang, P. Li, "IDOCTA: OCT angiography based on inverse SNR and decorrelation features," J. Innov. Opt. Health Sci. 14(01), 2130001 (2021).

    [12] C.-L. Chen, R. K. Wang, "Optical coherence tomography based angiography [Invited]," Biomed. Opt. Express 8(2), 1056–1082 (2017).

    [13] J. Liu, J. Fan, Q. Wang, W. He, C. Dong, M. Sun, G. Shi, "Observation of the early blood vessels of cutaneous malignant melanoma using swept source optical coherence tomography angiography (SSOCTA)," J. Innov. Opt. Health Sci. 12(04), 1942005 (2019).

    [14] Z. Zhang, T. Zhu, T. Cao, Z. Gong, L. Yao, K. Liu, J. Ye, P. Li, "Swept source intraoperative OCT angiography," J. Innov. Opt. Health Sci. 14(01), 2140009 (2021).

    [15] O. Nadiarnykh, V. Davidoiu, M. G. O. Gr?fe, M. Bosscha, A. C. Moll, J. F. de Boer, "Phase-based OCT angiography in diagnostic imaging of pediatric retinoblastoma patients: abnormal blood vessels in post-treatment regression patterns," Biomed. Opt. Express 10(5), 2213–2226 (2019).

    [16] Z. Hu, Y. Su, P. Xie, L. Chen, J. Ji, T. Feng, S. Wu, K. Liang, Q. Liu, "OCT angiography-based monitoring of neovascular regression on fibrovascular membrane after preoperative intravitreal conbercept injection," Graefe's Arch. Clin. Exp. Ophthalmol. 257(8), 1611–1619 (2019).

    [17] Z. Chu, C.-L. Chen, Q. Zhang, K. Pepple, M. Durbin, G. Gregori, R. K. Wang, "Complex signal-based optical coherence tomography angiography enables in vivo visualization of choriocapillaris in human choroid," J. Biomed. Opt. 22(12), 121705 (2017).

    [18] P. Gong, Q. Li, Q. Wang, K. Karnowski, D. D. Sampson, "Jones matrix-based speckle-decorrelation angiography using polarization-sensitive optical coherence tomography," J. Biophotonics 13(9), e202000007 (2020).

    [19] P. Tang, R. K. Wang, "Polarization sensitive optical coherence tomography for imaging microvascular information within living tissue without polarization-induced artifacts," Biomed. Opt. Express 11(11), 6379–6388 (2020).

    [20] K. S. Park, W. J. Choi, S. Song, J. Xu, R. K. Wang, "Multifunctional in vivo imaging for monitoring wound healing using swept-source polarization-sensitive optical coherence tomography," Lasers Surg. Med. 50(3), 213–221 (2018).

    [21] E. Li, S. Makita, Y.-J. Hong, D. Kasaragod, Y. Yasuno, "Three-dimensional multi-contrast imaging of in vivo human skin by Jones matrix optical coherence tomography," Biomed. Opt. Express 8(3), 1290–1305 (2017).

    [22] Y. Lin, X. Xiang, T. Chen, C. Gao, H. Fu, L. Wang, L. Deng, L. Zeng, J. Zhang, "In vivo monitoring and high-resolution characterizing of the prednisoloneinduced osteoporotic process on adult zebrafish by optical coherence tomography," Biomed. Opt. Express 10(3), 1184–1195 (2019).

    [23] Y. Lin, T. Chen, G. Mao, T. Qiu, Y. Lan, X. Xiang, J. Huang, J. Huang, T. Lu, S. Gan, X.-D. Sun, J. Zhang, "Long-term and in vivo assessment of A protein-induced brain atrophy in a zebrafish model by optical coherence tomography," J. Biophotonics 13(7), e202000067 (2020).

    [24] I. Bozic, X. Li, Y. Tao, "Quantitative biometry of zebrafish retinal vasculature using optical coherence tomographic angiography," Biomed. Opt. Express 9(3), 1244–1255 (2018).

    [25] Y. Chen, L. A. Trinh, J. Fingler, S. E. Fraser, "Phase variance optical coherence microscopy for label-free imaging of the developing vasculature in zebrafish embryos," J. Biomed. Opt. 21(12), 126022 (2016).

    [26] D. Yang, M. Hu, M. Zhang, Y. Liang, "Highresolution polarization-sensitive optical coherence tomography for zebrafish muscle imaging," Biomed. Opt. Express 11(10), 5618–5632 (2020).

    [27] Y. Jia, O. Tan, J. Tokayer, B. Potsaid, Y. Wang, J. J. Liu, M. F. Kraus, H. Subhash, J. G. Fujimoto, J. Hornegger, D. Huang, "Split-spectrum amplitudedecorrelation angiography with optical coherence tomography," Opt. Express 20(4), 4710–4725 (2012).

    [28] S. S. Gao, G. Liu, D. Huang, Y. Jia, "Optimization of the split-spectrum amplitude-decorrelation angiography algorithm on a spectral optical coherence tomography system," Opt. Lett. 40(10), 2305–2308 (2015).

    [29] V. J. Srinivasan, E. T. Mandeville, A. Can, F. Blasi, M. Climov, A. Daneshmand, J. H. Lee, E. Yu, H. Radhakrishnan, E. H. Lo, S. Sakad?i?, K. Eikermann-Haerter, C. Ayata, "Multiparametric, longitudinal optical coherence tomography imaging reveals acute injury and chronic recovery in experimental ischemic stroke," PLoS One 8(8), e71478 (2013).

    [30] C. Magnain, J. C. Augustinack, M. Reuter, C. Wachinger, M. P. Frosch, T. Ragan, T. Akkin, V. J. Wedeen, D. A. Boas, B. Fischl, "Blockface histology with optical coherence tomography: A comparison with Nissl staining," NeuroImage 84, 524–533 (2014).

    [31] A. P. Singh, C. Nüsslein-Volhard, "Zebrafish stripes as a model for vertebrate colour pattern formation," Curr. Biol. 25(2), R81–R92 (2015).

    [32] M. Levesque, Y. Feng, R. A. Jones, P. Martin, "Inflammation drives wound hyperpigmentation in zebrafish by recruiting pigment cells to sites of tissue damage," Dis. Model. Mech. 6(2), 508–515 (2013).

    [33] Z. Yuan, D. Yang, H. Pan, Y. Liang, "Axial superresolution study for optical coherence tomography images via deep learning," IEEE Access 8, 204941– 204950 (2020).

    [34] H. Pan, D. Yang, Z. Yuan, Y. Liang, "More realistic low-resolution OCT image generation approach for training deep neural networks," OSA Contin. 3(11), 3197–3205 (2020).

    [35] P. Gong, S. Es'haghian, F. M. Wood, D. D. Sampson, R. A. McLaughlin, "Optical coherence tomography angiography for longitudinal monitoring of vascular changes in human cutaneous burns," Exp. Dermatol. 25(9), 722–724 (2016).

    Di Yang, Zhuoqun Yuan, Zihan Yang, Muyun Hu, Yanmei Liang. High-resolution polarization-sensitive optical coherence tomography and optical coherence tomography angiography for zebrafish skin imaging[J]. Journal of Innovative Optical Health Sciences, 2021, 14(6): 2150022
    Download Citation