• Chinese Journal of Quantum Electronics
  • Vol. 31, Issue 3, 372 (2014)
Jin-ming WEI1、*, Fei-peng ZHANG2、3, and Jiu-xing ZHANG3
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • 3[in Chinese]
  • show less
    DOI: 10.3969/j.issn.1007461.2014.03.019 Cite this Article
    WEI Jin-ming, ZHANG Fei-peng, ZHANG Jiu-xing. Effects of Cu doping on electronic structure and electrical transport properties of ZnO oxide[J]. Chinese Journal of Quantum Electronics, 2014, 31(3): 372 Copy Citation Text show less
    References

    [1] Zhang F P, Lu Q M, Zhang X, et al. Preparation and improved electrical performance of the Pr-doped CaMnO[Trial mode] thermoelectric compound [J]. Phys. Scr., 2013, 88: 035705.

    [2] Peng J Y, Liu X Y, Fu L W, et al. Synthesis and thermoelectric properties of In[Trial mode]Co[Trial mode]Sb[Trial mode] composite [J]. J. Alloys Compds., 2012, 521: 141.

    [3] Qu X, Wang W, Lv S, et al. Thermoelectric properties and electronic structure of Al-doped ZnO [J]. Solid State Commun., 2011, 151: 332.

    [4] Funahashi S, Nakamura T, Kageyama K, et al. Monolithic oxide-metal composite thermoelectric generators for energy harvesting [J]. J. Appl. Phys., 2011, 109: 124509.

    [5] Zhang R Z, Hu X Y, Guo P, et al. Thermoelectric transport coefficients of n-doped CaTiO[Trial mode], SrTiO[Trial mode] and BaTiO[Trial mode]: A theoretical study [J]. Physica B, 2012, 407: 1114.

    [6] Ozgur U, Alivov Y I, Liu C, et al. A comprehensive review of ZnO materials and devices [J]. J. Appl. Phys., 2005, 98: 041301.

    [7] Pei J, Chen G, et al. High temperature transport and thermoelectric properties of Ca[Trial mode]Er[Trial mode]Co[Trial mode]O[Trial mode] [J]. Physica B, 2011, 406: 571.

    [8] Phaga P, Vora-Ud A, Seetawan T. Invension of low cost thermoelectric generators [J]. Procedia Eng., 2012, 32: 1050.

    [9] Wang Y, Sui Y, Wang X. et al. Structure, transport and magnetic properties of electron-doped perovskites R[Trial mode]Ca[Trial mode]MnO[Trial mode] (R=La, Y and Ce) [J]. J. Phys.: Condens. Matter., 2009, 21: 196004.

    [10] Lan J, Lin Y H, Liu Y, et al. High thermoelectric performance of nano-structured In[Trial mode]O[Trial mode]-based ceramics [J]. J. Am. Ceram. Soc., 2012, 95: 2465.

    [11] Terasaki I. High-temperature oxide thermoelectrics [J]. J. Appl. Phys., 2011, 110: 053705.

    [12] Zhang F P, Lu Q M, Zhang X, et al. Electrical transport properties of CaMnO[Trial mode] thermoelectric compound: A theoretical study [J]. J. Phys. Chem. Solids, 2013, 74: 1859.

    [13] Kroger P, Ruth M, Weber N, et al. Carrier localization in ZnO quantum wires [J]. App. Phys. Lett., 2012, 100: 263114.

    [14] Vogel-Schauble N, Romanyuk Y E, Yoon S, et al. Thermoelectric properties of nanostructured Al-substituted ZnO thin films [J]. Thin Solid Films, 2012, 520: 6869.

    [15] Fergus J F. Oxide materials for high temperature thermoelectric energy conversion [J]. J. Euro. Ceram. Soc., 2012, 32: 525.

    [16] Zhang C, Zhang C L, et al. Substitutional position and insulator-to-metal transition in Nb-doped SrTiO[Trial mode] [J]. Mater. Chem. Phys., 2008, 107: 215.

    [17] Nong N V, Liu C J, et al. High-temperature thermoelectric properties of late rare earth-doped Ca[Trial mode]Co[Trial mode]O[Trial mode] [J]. J. Alloys Compd., 2011, 509: 977.

    [18] Wang V, Ma D, et al. Structural and electronic properties of hexagonal ZnO: A hybrid functional study [J]. Solid State Commun., 2012, 152: 2045.

    [19] Ohtaki M, Tsubota T, Eguchi K. High temperature thermoelectric properties of (Zn[Trial mode]Al[Trial mode])O [J]. J. Appl. Phys., 1996, 79: 1816.

    [20] Park K, Ko KY. Effect of TiO[Trial mode] on high-temperature thermoelectric properties of ZnO [J]. J. Alloys Compd., 2007, 430: 200.

    [21] Payne M C, Teter M P, Allan D C, et al. Iterative minimization techniques for abinitio total-energy calculations-molecular-dynamics and conjugate gradients [J]. Rev. Modern Phys., 1992, 64: 1045.

    [22] Rossler U. Energy bands for CSI (Greens-Function Method) [J]. Bull. Am. Phys. Soc., 1969, 14: 331.

    [23] Li J C, Wang C L, Wang M X, et al. Vibrational and thermal properties of small diameter silicon nanowires [J]. J. Appl. Phys., 2009, 105: 043503.

    [26] Zhang F P, Zhang X, Lu Q M, et al. Doping induced electronic structure and estimated thermoelectric properties of CaMnO[Trial mode] compound oxide [J]. Physica B, 2011, 406: 1258.

    [27] Tsubota T, Ohno T, Shiraishi N, et al. Thermoelectric properties of Sn[Trial mode]Ti[Trial mode]Sb[Trial mode]O[Trial mode] ceramics [J]. J. Alloys Compd., 2008, 463: 288.

    [28] Miclau M, Hébert S, Retoux R, et al. Influence of A-site cation size on structural and physical properties in Ca[Trial mode]Sr[Trial mode]Mn[Trial mode]Mo[Trial mode]O[Trial mode]: A comparison of the [Trial mode]=0.3 and 0.6 compounds [J]. J. Solid State Chem., 2005, 178: 1104.

    [29] Zhang L, Singh D J. Electronic structure and thermoelectric properties of layered PbSe-WSe[Trial mode] materials [J]. Phys. Rev. B, 2009, 80: 075117.

    WEI Jin-ming, ZHANG Fei-peng, ZHANG Jiu-xing. Effects of Cu doping on electronic structure and electrical transport properties of ZnO oxide[J]. Chinese Journal of Quantum Electronics, 2014, 31(3): 372
    Download Citation