• Laser & Optoelectronics Progress
  • Vol. 58, Issue 14, 1410019 (2021)
Youbo Zhang1、2, Wei Guo2、3、*, Yue Zhou1, Gaofei Xu2, Guangwei Li2, and Hongming Sun2、3
Author Affiliations
  • 1College of Engineering Science and Technology, Shanghai Ocean University, Shanghai 201306, China
  • 2Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya, Hainan 572000, China
  • 3University of Chinese Academy of Sciences, Beijing 100049, China
  • show less
    DOI: 10.3788/LOP202158.1410019 Cite this Article Set citation alerts
    Youbo Zhang, Wei Guo, Yue Zhou, Gaofei Xu, Guangwei Li, Hongming Sun. Real-Time Target Detection of Underwater Relics Based on Multigranularity Pruning[J]. Laser & Optoelectronics Progress, 2021, 58(14): 1410019 Copy Citation Text show less
    YOLOV4 analysis. (a) Three kinds of dimensional feature diagrams and their corresponding anchor schematic diagrams; (b) cluster analysis result
    Fig. 1. YOLOV4 analysis. (a) Three kinds of dimensional feature diagrams and their corresponding anchor schematic diagrams; (b) cluster analysis result
    Images in the dataset. (a) Image collected by UUV; (b) image of “xiaobaijiao” relic; (c) data mining image; (d) “china” category; (e) “chinavase” category; (f) Mosaic online data augmentation
    Fig. 2. Images in the dataset. (a) Image collected by UUV; (b) image of “xiaobaijiao” relic; (c) data mining image; (d) “china” category; (e) “chinavase” category; (f) Mosaic online data augmentation
    Key frame image selection algorithm
    Fig. 3. Key frame image selection algorithm
    Enhanced results. (a) Original images; (b) CLAHE enhancement; (c) HE enhancement; (d) UCM enhancement; (e) UDCP enhancement
    Fig. 4. Enhanced results. (a) Original images; (b) CLAHE enhancement; (c) HE enhancement; (d) UCM enhancement; (e) UDCP enhancement
    Structure of Comp_YOLOV4
    Fig. 5. Structure of Comp_YOLOV4
    Process of detection
    Fig. 6. Process of detection
    Target detection results of the models
    Fig. 7. Target detection results of the models
    MethodPrincipleAdvantageDisadvantage
    PruningPrune unimportant parameters and connectionsFlexible operation and small loss of precisionNeed fine-tuning, training time increase
    QuantizationReduce parameter bit widthLow computation costAccuracy drops too severely to restore
    Knowledge distillationTransfer knowledge from complex models to small modelsA small number of parameters are used for calculationKnowledge transfer standards are difficult to determine and only apply to classification problems
    Network architecture searchAutomatically search for a network model that meets the parameters and accuracy requirementsHigh accuracyHigh training costs, search indicators are difficult to set
    Table 1. Summary of neural network compression methods
    ModelNTPNFPNFNP /%R /%RIoU /%F1 /%mAP /%LlossV /MB
    YOLOV382983321917279.928077.510.4514246.3
    YOLOV3-SPP65231498955782.277168.340.4270250.5
    YOLOV3-tiny356319794533135.993926.651.050034.7
    YOLOV4129268210958686.749088.340.4047256.0
    Table 2. Statistics of the basic training performance of models
    ModelατcτlayϕF1 /%mAP /%LlossV /MB
    YOLOV4-m-800010-30.100.50.057875.500.710018.5
    YOLOV4-pr-800010-30.100.50.057777.900.441818.5
    YOLOV4-m-800010-3/10-40.100.50.058577.980.612314.3
    YOLOV4-pr-800010-3/10-40.100.50.058680.470.560614.3
    YOLOV4-m-800010-3/10-40.080.50.17371.321.051311.3
    YOLOV4-pr-800010-3/10-40.080.50.17473.821.183211.3
    Table 3. Statistics of the performance for compression models
    Modelavg_FPS /(frame·s-1)BFLOPS
    YOLOV43.2106.752
    Comp_YOLOV418.210.588
    Table 4. Speed comparison of the target detection
    Youbo Zhang, Wei Guo, Yue Zhou, Gaofei Xu, Guangwei Li, Hongming Sun. Real-Time Target Detection of Underwater Relics Based on Multigranularity Pruning[J]. Laser & Optoelectronics Progress, 2021, 58(14): 1410019
    Download Citation