• Photonics Research
  • Vol. 9, Issue 5, B236 (2021)
Peng Dai1、†, Yasi Wang2、†, Yueqiang Hu2, C. H. de Groot1, Otto Muskens3, Huigao Duan2、4、*, and Ruomeng Huang1、5、*
Author Affiliations
  • 1School of Electronics and Computer Science, University of Southampton, Southampton SO17 1BJ, UK
  • 2National Engineering Research Center for High Efficiency Grinding, College of Mechanical and Vehicle Engineering, Hunan University, Changsha 410082, China
  • 3School of Physics and Astronomy, University of Southampton, Southampton SO17 1BJ, UK
  • 4e-mail: duanhg@hnu.edu.cn
  • 5e-mail: r.huang@soton.ac.uk
  • show less
    DOI: 10.1364/PRJ.415141 Cite this Article Set citation alerts
    Peng Dai, Yasi Wang, Yueqiang Hu, C. H. de Groot, Otto Muskens, Huigao Duan, Ruomeng Huang. Accurate inverse design of Fabry–Perot-cavity-based color filters far beyond sRGB via a bidirectional artificial neural network[J]. Photonics Research, 2021, 9(5): B236 Copy Citation Text show less
    References

    [1] N. Dean. Colouring at the nanoscale. Nat. Nanotechnol., 10, 15-16(2015).

    [2] J. Hong, E. Chan, T. Chang, T.-C. Fung, B. Hong, C. Kim, J. Ma, Y. Pan, R. Van Lier, S. Wang, B. Wen, L. Zhou. Continuous color reflective displays using interferometric absorption. Optica, 2, 589-597(2015).

    [3] L. Shao, X. Zhuo, J. Wang. Advanced plasmonic materials for dynamic color display. Adv. Mater., 30, 1704338(2018).

    [4] Y. Wang, M. Zheng, Q. Ruan, Y. Zhou, Y. Chen, P. Dai, Z. Yang, Z. Lin, Y. Long, Y. Li, N. Liu, C.-W. Qiu, J. K. W. Yang, H. Duan. Stepwise-nanocavity-assisted transmissive color filter array microprints. Research, 2018, 8109054(2018).

    [5] Y. Hu, X. Luo, Y. Chen, Q. Liu, X. Li, Y. Wang, N. Liu, H. Duan. 3D-integrated metasurfaces for full-colour holography. Light Sci. Appl., 8, 86(2019).

    [6] X. Luo, Y. Hu, X. Li, Y. Jiang, Y. Wang, P. Dai, Q. Liu, Z. Shu, H. Duan. Integrated metasurfaces with microprints and helicity-multiplexed holograms for real-time optical encryption. Adv. Opt. Mater., 8, 1902020(2020).

    [7] Y. Hu, L. Li, Y. Wang, M. Meng, L. Jin, X. Luo, Y. Chen, X. Li, S. Xiao, H. Wang, Y. Luo, C. W. Qiu, H. Duan. Trichromatic and tripolarization-channel holography with noninterleaved dielectric metasurface. Nano Lett., 20, 994-1002(2020).

    [8] K.-T. Lee, J. Y. Lee, S. Seo, L. J. Guo. Colored ultrathin hybrid photovoltaics with high quantum efficiency. Light Sci. Appl., 3, e215(2014).

    [9] M. Song, D. Wang, S. Peana, S. Choudhury, P. Nyga, Z. A. Kudyshev, H. Yu, A. Boltasseva, V. M. Shalaev, A. V. Kildishev. Colors with plasmonic nanostructures: a full-spectrum review. Appl. Phys. Rev., 6, 041308(2019).

    [10] K. Kumar, H. Duan, R. S. Hegde, S. C. W. Koh, J. N. Wei, J. K. W. Yang. Printing colour at the optical diffraction limit. Nat. Nanotechnol., 7, 557-561(2012).

    [11] M. L. Tseng, J. Yang, M. Semmlinger, C. Zhang, P. Nordlander, N. J. Halas. Two-dimensional active tuning of an aluminum plasmonic array for full-spectrum response. Nano Lett., 17, 6034-6039(2017).

    [12] B. Yang, W. Liu, Z. Li, H. Cheng, S. Chen, J. Tian. Polarization-sensitive structural colors with hue-and-saturation tuning based on all-dielectric nanopixels. Adv. Opt. Mater., 6, 1701009(2018).

    [13] V. Flauraud, M. Reyes, R. Paniagua-Domínguez, A. I. Kuznetsov, J. Brugger. Silicon nanostructures for bright field full color prints. ACS Photon., 4, 1913-1919(2017).

    [14] H. Shin, M. F. Yanik, S. Fan, R. Zia, M. L. Brongersma. Omnidirectional resonance in a metal–dielectric–metal geometry. Appl. Phys. Lett., 84, 4421-4423(2004).

    [15] D. Zhao, L. Meng, H. Gong, X. Chen, Y. Chen, M. Yan, Q. Li, M. Qiu. Ultra-narrow-band light dissipation by a stack of lamellar silver and alumina. Appl. Phys. Lett., 104, 221107(2014).

    [16] M. A. Kats, R. Blanchard, P. Genevet, F. Capasso. Nanometre optical coatings based on strong interference effects in highly absorbing media. Nat. Mater., 12, 20-24(2013).

    [17] C. Ji, C. Yang, W. Shen, K.-T. Lee, Y. Zhang, X. Liu, L. J. Guo. Decorative near-infrared transmission filters featuring high-efficiency and angular-insensitivity employing 1D photonic crystals. Nano Res., 12, 543-548(2019).

    [18] Z. Li, S. Butun, K. Aydin. Large-area, lithography-free super absorbers and color filters at visible frequencies using ultrathin metallic films. ACS Photon., 2, 183-188(2015).

    [19] Z. Yang, Y. Chen, Y. Zhou, Y. Wang, P. Dai, X. Zhu, H. Duan. Microscopic interference full-color printing using grayscale-patterned Fabry-Perot resonance cavities. Adv. Opt. Mater., 5, 1700029(2017).

    [20] Z. Yang, C. Ji, D. Liu, L. J. Guo. Enhancing the purity of reflective structural colors with ultrathin bilayer media as effective ideal absorbers. Adv. Opt. Mater., 7, 1900739(2019).

    [21] S. So, T. Badloe, J. Noh, J. Bravo-Abad, J. Rho. Deep learning enabled inverse design in nanophotonics. Nanophotonics, 9, 1041-1057(2020).

    [22] R. S. Hegde. Deep learning: a new tool for photonic nanostructure design. Nanoscale Adv., 2, 1007-1023(2020).

    [23] P. R. Wiecha, A. Arbouet, C. Girard, O. L. Muskens. Deep learning in nano-photonics: inverse design and beyond. Photon. Res., 9, B182-B200(2021).

    [24] Q. Zhang, H. Yu, M. Barbiero, B. Wang, M. Gu. Artificial neural networks enabled by nanophotonics. Light Sci. Appl., 8, 42(2019).

    [25] Y. Kiarashinejad, S. Abdollahramezani, A. Adibi. Deep learning approach based on dimensionality reduction for designing electromagnetic nanostructures. npj Comput. Mater., 6, 12(2020).

    [26] S. So, J. Mun, J. Rho. Simultaneous inverse design of materials and structures via deep learning: demonstration of dipole resonance engineering using core–shell nanoparticles. ACS Appl. Mater. Interfaces, 11, 24264-24268(2019).

    [27] J. Jiang, J. A. Fan. Global optimization of dielectric metasurfaces using a physics-driven neural network. Nano Lett., 19, 5366-5372(2019).

    [28] Y. Chen, J. Zhu, Y. Xie, N. Feng, Q. H. Liu. Smart inverse design of graphene-based photonic metamaterials by an adaptive artificial neural network. Nanoscale, 11, 9749-9755(2019).

    [29] T. Zhang, J. Wang, Q. Liu, J. Zhou, J. Dai, X. Han, Y. Zhou, K. Xu. Efficient spectrum prediction and inverse design for plasmonic waveguide systems based on artificial neural networks. Photon. Res., 7, 368-380(2019).

    [30] J. Peurifoy, Y. Shen, L. Jing, Y. Yang, F. Cano-Renteria, B. G. DeLacy, J. D. Joannopoulos, M. Tegmark, M. Soljačić. Nanophotonic particle simulation and inverse design using artificial neural networks. Sci. Adv., 4, eaar4206(2018).

    [31] I. Malkiel, M. Mrejen, A. Nagler, U. Arieli, L. Wolf, H. Suchowski. Plasmonic nanostructure design and characterization via deep learning. Light Sci. Appl., 7, 60(2018).

    [32] O. Hemmatyar, S. Abdollahramezani, Y. Kiarashinejad, M. Zandehshahvar, A. Adibi. Full color generation with Fano-type resonant HfO2 nanopillars designed by a deep-learning approach. Nanoscale, 11, 21266-21274(2019).

    [33] Z. Huang, X. Liu, J. Zang. The inverse design of structural color using machine learning. Nanoscale, 11, 21748-21758(2019).

    [34] J. Baxter, A. Calà Lesina, J.-M. Guay, A. Weck, P. Berini, L. Ramunno. Plasmonic colours predicted by deep learning. Sci. Rep., 9, 8074(2019).

    [35] L. Gao, X. Li, D. Liu, L. Wang, Z. Yu. A bidirectional deep neural network for accurate silicon color design. Adv. Mater., 31, 1905467(2019).

    [36] P. R. Wiecha, A. Lecestre, N. Mallet, G. Larrieu. Pushing the limits of optical information storage using deep learning. Nat. Nanotechnol., 14, 237-244(2019).

    [37] D. Liu, Y. Tan, E. Khoram, Z. Yu. Training deep neural networks for the inverse design of nanophotonic structures. ACS Photon., 5, 1365-1369(2018).

    [38] L. Xu, M. Rahmani, Y. Ma, D. A. Smirnova, K. Z. Kamali, F. Deng, Y. K. Chiang, L. Huang, H. Zhang, S. Gould, D. N. Neshev, A. E. Miroshnichenko. Enhanced light–matter interactions in dielectric nanostructures via machine-learning approach. Adv. Photon., 2, 026003(2020).

    [39] W. Ma, F. Cheng, Y. Liu. Deep-learning-enabled on-demand design of chiral metamaterials. ACS Nano, 12, 6326-6334(2018).

    [40] Y. LeCun, Y. Bengio, G. Hinton. Deep learning. Nature, 521, 436-444(2015).

    [41] I. Goodfellow, Y. Bengio, A. Courville. Deep Learning(2016).

    [42] F. W. Billmeyer. Color Science: Concepts and Methods, Quantitative Data and Formulae(1983).

    [43] C. Williams, G. S. D. Gordon, T. D. Wilkinson, S. E. Bohndiek. Grayscale-to-color: scalable fabrication of custom multispectral filter arrays. ACS Photon., 6, 3132-3141(2019).

    [44] Y. Horie, S. Han, J.-Y. Lee, J. Kim, Y. Kim, A. Arbabi, C. Shin, L. Shi, E. Arbabi, S. M. Kamali, H.-S. Lee, S. Hwang, A. Faraon. Visible wavelength color filters using dielectric subwavelength gratings for backside-illuminated CMOS image sensor technologies. Nano Lett., 17, 3159-3164(2017).

    [45] Q. Chen, X. Hu, L. Wen, Y. Yu, D. R. S. Cumming. Nanophotonic image sensors. Small, 12, 4922-4935(2016).

    [46] M. Habekost. Which color differencing equation should be used?. Int. Circ. Graph. Educ. Res., 6, 1-33(2013).

    [47] W. S. Mokrzycki, M. Tatol. Color difference delta E–a survey. Mach. Graph. Vis., 20, 383-411(2011).

    [48] A. Slowik, H. Kwasnicka. Evolutionary algorithms and their applications to engineering problems. Neural Comput. Appl., 32, 12363-12379(2020).

    [49] K. He, X. Zhang, S. Ren, J. Sun. Delving deep into rectifiers: surpassing human-level performance on imagenet classification. IEEE International Conference on Computer Vision, 2015, 1026-1034(2015).

    CLP Journals

    [1] Li Gao, Yang Chai, Darko Zibar, Zongfu Yu. Deep learning in photonics: introduction[J]. Photonics Research, 2021, 9(8): DLP1

    Peng Dai, Yasi Wang, Yueqiang Hu, C. H. de Groot, Otto Muskens, Huigao Duan, Ruomeng Huang. Accurate inverse design of Fabry–Perot-cavity-based color filters far beyond sRGB via a bidirectional artificial neural network[J]. Photonics Research, 2021, 9(5): B236
    Download Citation