• Journal of Infrared and Millimeter Waves
  • Vol. 42, Issue 1, 111 (2023)
Zhong-Peng JI1、2, Yu-Hua GUI1、2, Jin-Ning LI1、2, Yong-Jian TAN1、2, Qiu-Jie YANG1, Jian-Yu WANG1、2、*, and Zhi-Ping HE1、2、**
Author Affiliations
  • 1Key Laboratory of Space Active Opto-Electronics Technology,Shanghai Institute of Technical Physics,Chinese Academy of Sciences,Shanghai 200083,China
  • 2University of Chinese Academy of Sciences,Beijing 1000496,China
  • show less
    DOI: 10.11972/j.issn.1001-9014.2023.01.014 Cite this Article
    Zhong-Peng JI, Yu-Hua GUI, Jin-Ning LI, Yong-Jian TAN, Qiu-Jie YANG, Jian-Yu WANG, Zhi-Ping HE. An acousto-optic tunable filter spectral measurement method based on compressed sensing[J]. Journal of Infrared and Millimeter Waves, 2023, 42(1): 111 Copy Citation Text show less
    References

    [1] Zhiping HE et al. Operating principles and detection characteristics of the Visible and Near-Infrared Imaging Spectrometer in the Chang'e-3. RAA, 14, 1567-1577(2014).

    [2] Zhiping HE et al. Visible and near-infrared imaging spectrometer and its preliminary results from the Chang’E 3 project. Review of Science Instruments, 85, 083104(2014).

    [3] C.L. Li, Z.D. Wang, R. Xu et al. ‘‘The Scientific Information Model of Chang’e-4 Visible and Near-IR Imaging Spectrometer (VNIS) and In-Flight Verification’’. Sensors, 19, E2806(2019).

    [4] Z.P. He, C.L. Li, R. Xu et al. ‘‘Spectrometers Based on Acousto-Optic Tunable Filters for In-Situ Lunar Surface Measurement’’. J. Appl. Remote Sens, 13, 027502(2019).

    [5] He , Zhiping et al. Measurement and Correction Model for Temperature Dependence of an Acousto-Optic Tunable Filter (AOTF) Infrared Spectrometer for Lunar Surface Detection. Applied Spectroscopy, 74, 81-87(2020).

    [6] N J Chanover, D A Glenar, D G Voelz et al. An AOTF-LDTOF spectrometer suite for in situ organic detection and characterization, 1-13(2011).

    [7] D A Glenar, J J Hillman, B Saif et al. Acousto-optic imaging spectropolarimetry for remote sensing. Appl Opt, 33, 7412-7424(1994).

    [8] E Dekemper, J Vanhamel, B Van Opstal et al. The AOTF-based NO2 camera. Atmospheric Measurement Techniques, 9(2016).

    [9] J Vanhamel, E Dekemper, S Berkenbosch et al. Novel acousto-optical tunable filter (AOTF) based spectropolarimeter for the characterization of auroral emission. Instrumentation Science & Technology, 1-13(2020).

    [10] E Dekemper, J Vanhamel, J C Kastelik et al. New AOTF-based instrumental concepts for atmospheric science, 11210, 112100S(2019).

    [11] E Dekemper, N Loodts, B Van Opstal et al. Tunable acousto-optic spectral imager for atmospheric composition measurements in the visible spectral domain. Applied optics, 51, 6259-6267.0(2012).

    [12] Y Zeng, L Wang, S Y Wu et al. Wavelength-scanning SPR imaging sensors based on an acousto-optic tunable filter and a white light laser. Sensors, 17, 90(2017).

    [13] N Gat. Imaging spectroscopy using tunable filters: a review, 4056, 50-64(2000).

    [14] W S Davies. Design and fabrication of acousto-optic devices. Optics and Lasers in Engineering, 21, 249-250(1994).

    [15] Vila-Francés , Joan et al. Design of a Configurable Multispectral Imaging System Based on an AOTF. IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control, 58, 259-262(2011).

    [16] L Genchi, A Bucci, S P Laptenok et al. Hadamard-transform spectral acquisition with an acousto-optic tunable filter in a broadband stimulated Raman scattering microscope. Optics Express, 29, 2378-2386(2021).

    [17] R Hammaker, R DeVerse, D Asunskis et al. Hadamard Transform Near‐Infrared Spectrometers(2006).

    [18] M E Gehm, R John, D J Brady et al. Single-shot compressive spectral imaging with a dual-disperser architecture. Optics express, 15, 14013-14027(2007).

    [19] A Wagadarikar, R John, R Willett et al. Single disperser design for coded aperture snapshot spectral imaging. Applied optics, 47, B44-B51(2008).

    [20] August , Yitzhak , Adrian Stern. “Compressive Sensing Spectrometry Based on Liquid Crystal Devices.”. Optics Letters, 38, 4996-4999(2013).

    [21] Oiknine , Yaniv et al. Compressive Sensing Resonator Spectroscopy. Optics Letters, 42, 25-28(2017).

    [22] Bao , Jie , G Moungi. Bawendi. A Colloidal Quantum Dot Spectrometer.” Nature, 523, 67-70(2015).

    [23] J. Oliver et al. Filters with Random Transmittance for Improving Resolution in Filter-Array-Based Spectrometers. Optics Express, 21, 3969-3989(2013).

    [24] Song , Hongya Zhang, Wenyi Li, Haifeng Liu, Xu . Review of compact computational spectral information acquisition systems. Frontiers of Information Technology & Electronic Engineering, 21(2020).

    [25] Ravishankar , Saiprasad , Bresler , Yoram . Learning Sparsifying Transforms. IEEE Transactions on Signal Processing, 61, 1072-1086(2013).

    [26] Candès , Emmanuel , Romberg , Justin Tao, Terence . Stable Signal Recovery from Incomplete and Inaccurate Measurements. Communications on Pure and Applied Mathematics, 59(2006).

    [27] Kim , Seung-Jean & Koh , K Lustig, M Boyd, Stephen & Gorinevsky , Dimitry . An Interior-Point Method for Large-Scale L1-Regularized Least Squares. Selected Topics in Signal Processing, IEEE Journal of, 1, 606-617(2008).

    [28] Joel A Tropp. Greed is good: Algorithmic results for sparse approximation. IEEE Transactions on Information theory, 50, 2231-2242, 2004.

    [29] Candès , Emmanuel . The restricted isometry property and its implications for compressed sensing. Compte Rendus de l'Academie des Sciences, 346, 589-592(2008).

    [30] Neelam Gupta, R Dennis. Suhre, "Notch filtering using a multiple passband AOTF in the SWIR region,". Appl. Opt. 55, 7855-7860(2016).

    [31] Shi-Jie LIU, Chun-Lai LI, Rui XU et al. High-precision algorithm for restoration of spectral imaging based on joint solution of double sparse domains. J. Infrared Millim.Waves, 40, 685-695(2021).

    Zhong-Peng JI, Yu-Hua GUI, Jin-Ning LI, Yong-Jian TAN, Qiu-Jie YANG, Jian-Yu WANG, Zhi-Ping HE. An acousto-optic tunable filter spectral measurement method based on compressed sensing[J]. Journal of Infrared and Millimeter Waves, 2023, 42(1): 111
    Download Citation