• Acta Photonica Sinica
  • Vol. 50, Issue 8, 0850211 (2021)
Simin WU1, Bohan ZHANG1, Bin ZHENG3, and Minbiao JI1、2
Author Affiliations
  • 1State Key Laboratory of Surface Physics,Department of Physics,Fudan University,Shanghai200433, China
  • 2Yiwu Research Institute of Fudan University,Yiwu, Zhejiang3000, China
  • 3Zhejiang Provincial People's Hospital, Hangzhou10014, China
  • show less
    DOI: 10.3788/gzxb20215008.0850211 Cite this Article
    Simin WU, Bohan ZHANG, Bin ZHENG, Minbiao JI. Pump-probe Microscopy: Applications in Biomedicine and Materials Science (Invited)[J]. Acta Photonica Sinica, 2021, 50(8): 0850211 Copy Citation Text show less
    References

    [1] A H ZEWAIL. Laser femtochemistry. Science, 242, 1645(1988).

    [2] D ZHONG, C WAN et al. Femtosecond dynamics of a drug-protein complex: Daunomycin with Apo riboflavin-binding protein. Proceedings of the National Academy of Sciences, 98, 11873(2001).

    [3] J PEON, B BAGCHI et al. Biological water: femtosecond dynamics of macromolecular hydration. The Journal of Physical Chemistry B, 106, 12376-12395(2002).

    [4] C Y DONG, T FRENCH et al. Fluorescence lifetime imaging by asynchronous pump-probe microscopy. Biophysical Journal, 69, 2234-2242(1995).

    [5] C BUEHLER, C Y DONG et al. Time-resolved polarization imaging by pump-probe (stimulated emission) fluorescence microscopy. Biophysical Journal, 79, 536-549(2000).

    [6] F DAN, Y TONG, E M THOMAS et al. Two-color, two-photon, and excited-state absorption microscopy. Journal of Biomedical Optics, 12, 1-8(2007).

    [7] I R PILETIC, T E MATTHEWS, W S WARREN. Probing near-infrared photorelaxation pathways in eumelanins and pheomelanins. The Journal of Physical Chemistry A, 114, 11483-11491(2010).

    [8] A OTHONOS, C CHRISTOFIDES. Spatial dependence of ultrafast carrier recombination centers of phosphorus-implanted and annealed silicon wafers. Applied Physics Letters, 81, 856-858(2002).

    [9] Y FUJII, K HORIUCHI, F KANNARI et al. Optical imaging of defect density distribution in ion-implanted GaAs using ultrafast carrier dynamics. Japanese Journal of Applied Physics, 43, 184-185(2004).

    [10] H W YOON, D R WAKE, J P WOLFE et al. In-plane transport of photoexcited carriers in GaAs quantum wells. Physical Review B, 46, 13461-13470(1992).

    [11] M M GABRIEL, J R KIRSCHBROWN, J D CHRISTESEN et al. Direct imaging of free carrier and trap carrier motion in silicon nanowires by spatially-separated femtosecond pump–probe microscopy. Nano Letters, 13, 1336-1340(2013).

    [12] S DAYEH et al. Mapping carrier diffusion in single silicon core-shell nanowires with ultrafast optical microscopy. Ultrafast Dynamics in Molecules, 128-143(2013).

    [13] C R CAREY, Y YU, M KUNO et al. Ultrafast transient absorption measurements of charge carrier dynamics in single II-VI nanowires. The Journal of Physical Chemistry C, 113, 19077-19081(2009).

    [14] T A MAJOR, N PETCHSANG et al. Charge carrier trapping and acoustic phonon modes in single CdTe nanowires. ACS Nano, 6, 5274-5282(2012).

    [15] H Y SHI, L HUANG et al. Imaging the extent of plasmon excitation in Au nanowires using pump-probe microscopy. Optics Letters, 38, 1265-1267(2013).

    [16] G GRANCINI, N MARTINO, M BIANCHI et al. Ultrafast spectroscopic imaging of exfoliated graphene. Physica Status Solidi (b), 249, 2497-2499(2012).

    [17] B GAO, G V HARTLAND, L HUANG. Transient absorption spectroscopy and imaging of individual chirality-assigned single-walled carbon nanotubes. ACS Nano, 6, 5083-5090(2012).

    [18] G KHITROVA, P R BERMAN, M SARGENT. Theory of pump–probe spectroscopy. Journal of the Optical Society of America B, 5, 160-170(1988).

    [19] M C FISCHER, J W WILSON, F E ROBLES et al. Invited review article: pump-probe microscopy. Review of Scientific Instruments, 87(2016).

    [20] E M GRUMSTRUP, M M GABRIEL, E E M CATING et al. Pump-probe microscopy: visualization and spectroscopy of ultrafast dynamics at the nanoscale. Chemical Physics, 458, 30-40(2015).

    [21] Y ZHU, J X CHENG. Transient absorption microscopy: Technological innovations and applications in materials science and life science. The Journal of Chemical Physics, 152(2020).

    [22] M M GABRIEL, E M GRUMSTRUP, J R KIRSCHBROWN et al. Imaging charge separation and carrier recombination in nanowire p-i-n junctions using ultrafast microscopy. Nano Letters, 14, 3079-3087(2014).

    [23] L HUANG, G V HARTLAND, L-Q CHU et al. Ultrafast transient absorption microscopy studies of carrier dynamics in epitaxial graphene. Nano Letters, 10, 1308-1313(2010).

    [24] B GAO, G HARTLAND, T FANG et al. Studies of intrinsic hot phonon dynamics in suspended graphene by transient absorption microscopy. Nano Letters, 11, 3184-3189(2011).

    [25] M W GRAHAM, S-F SHI, Z WANG et al. Transient absorption and photocurrent microscopy show that hot electron supercollisions describe the rate-limiting relaxation step in graphene. Nano Letters, 13, 5497-5502(2013).

    [26] S MURPHY, L HUANG. Transient absorption microscopy studies of energy relaxation in graphene oxide thin film. Journal of Physics, 25, 144203(2013).

    [27] X MIAO, G ZHANG, F WANG et al. Layer-dependent ultrafast carrier and coherent phonon dynamics in black phosphorus. Nano Letters, 18, 3053-3059(2018).

    [28] H SHI, R YAN, S BERTOLAZZI et al. Exciton dynamics in suspended monolayer and few-layer MoS2 2D crystals. ACS Nano, 7, 1072-1280(2013).

    [29] Q CUI, F CEBALLOS, N KUMAR et al. Transient absorption microscopy of monolayer and bulk WSe2. ACS Nano, 8, 2970-2976(2014).

    [30] H YAMAGUCHI, A D MOHITE et al. Ultrafast optical microscopy of single monolayer molybdenum disulfide flakes. Scientific Reports, 6, 21601(2016).

    [31] S GE, X LIU, X QIAO et al. Coherent longitudinal acoustic phonon approaching THz frequency in multilayer molybdenum disulphide. Scientific Reports, 4, 5722(2014).

    [32] Z GUO, J S MANSER, Y WAN et al. Spatial and temporal imaging of long-range charge transport in perovskite thin films by ultrafast microscopy. Nature Communications, 6, 7471(2015).

    [33] M J SIMPSON, B DOUGHTY, B YANG et al. Spatial localization of excitons and charge carriers in hybrid perovskite thin films. The Journal of Physical Chemistry Letters, 6, 3041-3047(2015).

    [34] M J SIMPSON, B DOUGHTY, B YANG et al. Imaging electronic trap states in perovskite thin films with combined fluorescence and femtosecond transient absorption microscopy. The Journal of Physical Chemistry Letters, 7, 1725-31(2016).

    [35] Z GUO, Y WAN, M YANG et al. Long-range hot-carrier transport in hybrid perovskites visualized by ultrafast microscopy. Science, 356, 59(2017).

    [36] A H HILL, K E SMYSER, C L KENNEDY et al. Screened charge carrier transport in methylammonium lead iodide perovskite thin films. The Journal of Physical Chemistry Letters, 8, 948-953(2017).

    [37] Z GUO, N ZHOU, O F WILLIAMS et al. Imaging carrier diffusion in perovskites with a diffractive optic-based transient absorption microscope. The Journal of Physical Chemistry C, 122, 10650-10656(2018).

    [38] J M SNAIDER, Z GUO, T WANG et al. Ultrafast imaging of carrier transport across grain boundaries in hybrid perovskite thin films. ACS Energy Letters, 3, 1402-1208(2018).

    [39] B SCHULER, E A LIPMAN, W A EATON. Probing the free-energy surface for protein folding with single-molecule fluorescence spectroscopy. Nature, 419, 743-747(2002).

    [40] H P LU, L XUN, X S XIE. Single-molecule enzymatic dynamics. Science, 282, 1877(1998).

    [41] H BALCI, Y ISHITSUKA et al. Advances in single-molecule fluorescence methods for molecular biology. Annual Review of Biochemistry, 77, 51-76(2008).

    [42] E J G PETERMAN, H SOSA, W E MOERNER. Single-molecule fluorescence spectroscopy and microscopy of biomolecular motors. Annual Review of Physical Chemistry, 091602.094340, 55(2004).

    [43] J MERTZ. Nonlinear microscopy: new techniques and applications. Current Opinion in Neurobiology, 14, 610-616(2004).

    [44] H R PETTY. Fluorescence microscopy: established and emerging methods, experimental strategies, and applications in immunology. Microscopy Research and Technique, 70, 687-709(2007).

    [45] W MIN, C W FREUDIGER, S LU et al. Coherent nonlinear optical imaging: beyond fluorescence microscopy. Annual Review of Physical Chemistry, 62, 507-530(2011).

    [46] W MIN, S LU, S CHONG et al. Imaging chromophores with undetectable fluorescence by stimulated emission microscopy. Nature, 461, 1105-1109(2009).

    [47] S GE, C LI, Z ZHANG et al. Dynamical evolution of anisotropic response in black phosphorus under ultrafast photoexcitation. Nano Letters, 15, 4650-4656(2015).

    [48] X WANG, K SHINOKITA et al. Direct and indirect exciton dynamics in few-layered ReS2 revealed by photoluminescence and pump-probe spectroscopy. Advanced Functional Materials, 29, 1806169(2019).

    [49] K NAKAGAWA, S TSUCHIYA, J YAMADA et al. Pump- and probe-polarization analyses of ultrafast carrier dynamics in organic superconductors. Journal of Superconductivity and Novel Magnetism, 29, 3065-3069(2016).

    [50] C W FREUDIGER, W MIN, B G SAAR et al. Label-free biomedical imaging with high sensitivity by stimulated raman scattering microscopy. Science, 322, 1857(2008).

    [51] J LING, X MIAO, Y SUN et al. Vibrational imaging and quantification of two-dimensional hexagonal boron nitride with stimulated raman scattering. ACS Nano, 13, 14033-14040(2019).

    [52] P WANG, M N SLIPCHENKO, J MITCHELL et al. Far-field imaging of non-fluorescent species with subdiffraction resolution. Nature Photonics, 7, 449-453(2013).

    [53] M J SIMPSON, K E GLASS, J W WILSON et al. Pump-probe microscopic imaging of jurassic-aged eumelanin. The Journal of Physical Chemistry Letters, 4, 1924-1927(2013).

    [54] F E ROBLES, J W WILSON et al. Pump-probe imaging of pigmented cutaneous melanoma primary lesions gives insight into metastatic potential. Biomedical Optics Express, 6, 3631-3645(2015).

    [55] D FU, T YE, T E MATTHEWS et al. High-resolution in vivo imaging of blood vessels without labeling. Optics Letters, 32, 2641-2643(2007).

    [56] D FU, T E MATTHEWS, Tong YE et al. Label-free in vivo optical imaging of microvasculature and oxygenation level. Journal of Biomedical Optics, 13, 1-3(2008).

    [57] L ZHANG, X ZOU, B ZHANG et al. Label-free imaging of hemoglobin degradation and hemosiderin formation in brain tissues with femtosecond pump-probe microscopy. Theranostics, 8, 4129-4140(2018).

    [58] T E MATTHEWS, I R PILETIC, M A SELIM et al. Pump-probe imaging differentiates melanoma from melanocytic nevi. Science Translational Medicine, 3, 71ra15(2011).

    [59] E A A POGNA, M MARSILI, D DE FAZIO et al. Photo-induced bandgap renormalization governs the ultrafast response of single-layer MoS2. ACS Nano, 10, 1182-1188(2016).

    [60] H WANG, C ZHANG, F RANA. Ultrafast dynamics of defect-assisted electron–hole recombination in monolayer MoS2. Nano Letters, 15, 339-345(2015).

    [61] S KAR, Y SU, R R NAIR et al. Probing photoexcited carriers in a few-layer MoS2 laminate by time-resolved optical pump-terahertz probe spectroscopy. ACS Nano, 9, 12004-12010(2015).

    [62] T BORZDA, C GADERMAIER, N VUJICIC et al. Charge photogeneration in few-layer MoS2. Advanced Functional Materials, 25, 3351-3358(2015).

    [63] L ZHANG, S SHEN, Z LIU et al. Label-free, quantitative imaging of MoS2-nanosheets in live cells with simultaneous stimulated Raman scattering and transient absorption microscopy. Advanced Biosystems, 1, 1700013(2017).

    [64] R SCHMIDT, G BERGHäUSER, R SCHNEIDER et al. Ultrafast coulomb-induced intervalley coupling in atomically thin WS2. Nano Letters, 16, 2945-2950(2016).

    [65] C RUPPERT, A CHERNIKOV, H M HILL et al. The role of electronic and phononic excitation in the optical response of monolayer WS2 after ultrafast excitation. Nano Letters, 17, 644-651(2017).

    [66] J KIM, X HONG, C JIN et al. Ultrafast generation of pseudo-magnetic field for valley excitons in WSe2 monolayers. Science, 346, 1205(2014).

    [67] P STEINLEITNER, P MERKL, P NAGLER et al. Direct observation of ultrafast exciton formation in a monolayer of WSe2. Nano Letters, 17, 1455-1260(2017).

    [68] A SINGH, G MOODY, S WU et al. Coherent electronic coupling in atomically thin MoSe2. Physical Review Letters, 112, 216804(2014).

    [69] F GAO, Y GONG, M TITZE et al. Valley trion dynamics in monolayer MoSe2. Physical Review B, 94, 245413(2016).

    [70] S J MENG, H Y SHI, H JIANG et al. Anisotropic charge carrier and coherent acoustic phonon dynamics of black phosphorus studied by transient absorption microscopy. Journal of Physical Chemistry C, 123, 20051-20058(2019).

    [71] G W ZHANG, A CHAVES, S Y HUANG et al. Determination of layer-dependent exciton binding energies in few-layer black phosphorus. Science Advances, 4, 6(2018).

    [72] X M WANG, A M JONES, K L SEYLER et al. Highly anisotropic and robust excitons in monolayer black phosphorus. Nature Nanotechnology, 10, 517-521(2015).

    [73] G W ZHANG, S Y HUANG, A CHAVES et al. Infrared fingerprints of few-layer black phosphorus. Nature Communications, 8, 9(2017).

    [74] V TRAN, R SOKLASKI, Y F LIANG et al. Layer-controlled band gap and anisotropic excitons in few-layer black phosphorus. Physical Review B, 89, 6(2014).

    [75] H LIU, A T NEAL, Z ZHU et al. Phosphorene: an unexplored 2D semiconductor with a high hole mobility. ACS Nano, 8, 4033-4041(2014).

    [76] L LI, J KIM, C JIN et al. Direct observation of the layer-dependent electronic structure in phosphorene. Nature Nanotechnology, 12, 21-25(2017).

    [77] A K GEIM, I V GRIGORIEVA. Van der Waals heterostructures. Nature, 499, 419-425(2013).

    [78] K S NOVOSELOV, A MISHCHENKO, A CARVALHO et al. 2D materials and van der Waals heterostructures. Science, 353(2016).

    [79] C JIN, E Y MA, O KARNI et al. Ultrafast dynamics in van der Waals heterostructures. Nature Nanotechnology, 13, 994-1003(2018).

    [80] M MASSICOTTE, P SCHMIDT, F VIALLA et al. Picosecond photoresponse in van der Waals heterostructures. Nature Nanotechnology, 11, 42-46(2016).

    [81] C GONG, E M KIM, Y WANG et al. Multiferroicity in atomic van der Waals heterostructures. Nature Communications, 10, 2657(2019).

    [82] B HUNT, J D SANCHEZ-YAMAGISHI, A F YOUNG et al. Massive dirac fermions and hofstadter butterfly in a van der Waals heterostructure. Science, 340, 1427(2013).

    [83] K WANG, B HUANG, M TIAN et al. Interlayer coupling in twisted WSe2/WS2 bilayer heterostructures revealed by optical spectroscopy. ACS Nano, 10, 6612-6622(2016).

    [84] L YUAN, T F CHUNG et al. Photocarrier generation from interlayer charge-transfer transitions in WS2-graphene heterostructures. Science Advances, 4(2018).

    [85] T ZHU, L YUAN, Y ZHAO et al. Highly mobile charge-transfer excitons in two-dimensional WS2/tetracene heterostructures. Science Advances, 4(2018).

    [86] J S LAURET, C VOISIN, G CASSABOIS et al. Ultrafast carrier dynamics in single-wall carbon nanotubes. Physical Review Letters, 90(2003).

    [87] Y JUNG, M N SLIPCHENKO, C H LIU et al. Fast detection of the metallic state of individual single-walled carbon nanotubes using a transient-absorption optical microscope. Physical Review Letters, 105, 217401(2010).

    [88] L TONG, Y LIU, B D DOLASH et al. Label-free imaging of semiconducting and metallic carbon nanotubes in cells and mice using transient absorption microscopy. Nature Nanotechnology, 7, 56-61(2012).

    Simin WU, Bohan ZHANG, Bin ZHENG, Minbiao JI. Pump-probe Microscopy: Applications in Biomedicine and Materials Science (Invited)[J]. Acta Photonica Sinica, 2021, 50(8): 0850211
    Download Citation