• Laser & Optoelectronics Progress
  • Vol. 58, Issue 17, 1700004 (2021)
Wei Zhang1,2, Jin Yu2,*, and Yi Zheng1
Author Affiliations
  • 1Institute of Laser, School of Science, Beijing Jiaotong University, Beijing 100044, China
  • 2Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China
  • show less
    DOI: 10.3788/LOP202158.1700004 Cite this Article Set citation alerts
    Wei Zhang, Jin Yu, Yi Zheng. Temporal Pulse Shaping in Master Oscillator Power Amplifiers[J]. Laser & Optoelectronics Progress, 2021, 58(17): 1700004 Copy Citation Text show less
    References

    [1] Xuan G X, Shen S X. Birth of laser and development of laser[J]. Discovery of Nature, 179-185(1988).

    [2] Richardson D J, Nilsson J, Clarkson W A et al. High power fiber lasers: current status and future perspectives[J]. Journal of the Optical Society of America B, 27, B63-B92(2010).

    [3] Liu D M, Yan C L. Key technologies and applications for high power fibre laser[J]. Infrared and Laser Engineering, 35, 105-109(2006).

    [4] Michalska M, Swiderski J, Mamajek M et al. Arbitrary pulse shaping in Er-doped fiber amplifiers: possibilities and limitations[J]. Optics & Laser Technology, 60, 8-13(2014).

    [5] Shi W, Fang Q, Tian X P et al. 300 W-average-power monolithic actively Q-switched fiber laser at 1064 nm[J]. Laser Physics, 24, 065102(2014).

    [6] Wang T Z. Optimization design of MOPA high power fiber amplifier[D](2016).

    [7] Dong X L, Xiao H, Xu S H et al. 122 W high-power single-frequency MOPA fiber laser in all-fiber format[J]. Chinese Optics Letters, 9, 111404(2011).

    [8] Shi H X, Tan F Z, Cao Y et al. W diode-seeded nanosecond thulium-doped fiber MOPA system incorporating active pulse shaping[C], STu4M.8(2016).

    [9] Feng T. Study on physical characteristics of amplifier stage gain fibers and key techniques of seed sources in MOPA fiber laser system[D](2015).

    [10] Li Z, Heidt A M, Teh P S et al. High energy diode-seeded nanosecond 2 µm fiber MOPA systems incorporating active pulse shaping[C], 1-2(2014).

    [11] Wu T, Pang T, Tang Y Q et al. Application of MOPA all-fiber pulsed laser in RDTS system[J]. Chinese Journal of Lasers, 46, 1101009(2019).

    [12] Adel P, Auerbach M, Fallnich C et al. Passive Q-switching by Tm3+ co-doping of a Yb3+-fiber laser[J]. Optics Express, 11, 2730-2735(2003).

    [13] Chang Y M, Lee J, Jhon Y M et al. Active Q-switching in an erbium-doped fiber laser using an ultrafast silicon-based variable optical attenuator[J]. Optics Express, 19, 26911-26916(2011).

    [14] Delgado-Pinar M, Zalvidea D, Díez A et al. Q-switching of an all-fiber laser by acousto-optic modulation of a fiber Bragg grating[J]. Optics Express, 14, 1106-1112(2006).

    [15] Zhang P P, Zhang P, Huang B C et al. Research on a high stability all-fiber Q-switched pulse fiber laser[J]. Laser & Infrared, 45, 902-906(2015).

    [16] Zhang J, Zhang D, Liu H W et al. Actively Q-switched fiber laser with narrow linewidth, narrow pulse width, and high repetition rate[J]. Chinese Journal of Lasers, 47, 0101002(2020).

    [17] Yuan R[M]. Optical fiber communications technology(2011).

    [18] Wu Q, Fan Z W, Yu J et al. Research progress of nanosecond regime pulsed fiber lasers[J]. Laser & Optoelectronics Progress, 49, 060004(2012).

    [19] Paschotta R, Nilsson J, Tropper A C et al. Ytterbium-doped fiber amplifiers[J]. IEEE Journal of Quantum Electronics, 33, 1049-1056(1997).

    [20] Jackson S D, King T A. Theoretical modeling of Tm-doped silica fiber lasers[J]. Journal of Lightwave Technology, 17, 948-956(1999).

    [21] Fang Q, Shi W, Fan J L. 700-kW-peak-power monolithic nanosecond pulsed fiber laser[J]. IEEE Photonics Technology Letters, 26, 1676-1678(2014).

    [22] Kong L F, Lou Q H, Zhou J et al. Power amplifier for 1064 nm using Yb3+-doped double-clad fiber[J]. Chinese Optics Letters, 2, 98-99(2004).

    [23] Bohling C, Zimmermann H, Hohmann K et al. Synchronised pulsed pumped fiber amplifiers[C], 1-2(2007).

    [24] Kong Y, Liu Q Z, Deng C et al. Pulsed pumped Yb3+-doped double-cladding fiber amplifier[J]. Journal of Modern Optics, 56, 597-600(2009).

    [25] Yue C L, Sun J F, Liu L et al. High-sensitivity homodyne coherent receiver using EDFA as preamplifier[J]. Chinese Journal of Lasers, 46, 1106001(2019).

    [26] Chen X L, He Y, Xu Z W et al. Theoretical and experimental investigation of a 10 kW high-efficiency 1070 nm fiber amplifier[J]. Chinese Journal of Lasers, 47, 1006001(2020).

    [27] Liu Q, Ye Q, Cai H W et al. Progress of pulse shaping technology using optical fiber devices[J]. Laser & Optoelectronics Progress, 48, 120603(2011).

    [28] Dubois S E O. Pulse sharpening and gain saturation in traveling-wave masers[J]. The Bell System Technical Journal, 43, 625-658(1964).

    [29] Kirkpatrick S, Gelatt C D, Vecchi M P et al. Optimization by simulated annealing[J]. Science, 220, 671-680(1983).

    [30] Shaw M J, Williams W H, House R K et al. Laser performance operations model (LPOM)[J]. Proceedings of SPIE, 5341, 73-83(2004).

    [31] Oliveira P, Addis S, Gay J et al. Control of temporal shape of nanosecond long lasers using feedback loops[J]. Optics Express, 27, 6607-6617(2019).

    [32] Vu K T, Malinowski A, Richardson D J et al. Adaptive pulse shape control in a diode-seeded nanosecond fiber MOPA system[J]. Optics Express, 14, 10996-11001(2006).

    [33] Frantz L M, Nodvik J S. Theory of pulse propagation in a laser amplifier[J]. Journal of Applied Physics, 34, 2346-2349(1963).

    [34] Schimpf D N, Ruchert C, Nodop D et al. Compensation of pulse-shaping due to saturation in fiber amplifiers[J]. Proceedings of SPIE, 7195, 71951E(2009).

    [35] Feng X P, Lu P X, Xu Z Z et al. Efficiency of laser heating plasma with a prepulse[J]. Chinese Journal of Quantum Electronics, 7, 313-320(1990).

    [36] Peng H M, Zhang G P, Sheng J T et al. Using prepulsing: a useful way for increasing absorption efficiency of high intensity laser beam[J]. Chinese Journal of Computation Physics, 7, 101-107(1990).

    [37] Schimpf D N, Ruchert C, Nodop D et al. Compensation of pulse-distortion in saturated laser amplifiers[J]. Optics Express, 16, 17637-17646(2008).

    [38] Jiang M, Su R T, Wang X L et al. Time-domain characteristic regulation of pulse fiber amplifier based on stochastic parallel gradient descent algorithm[J]. Laser & Optoelectronics Progress, 54, 030604(2017).

    [39] Liu R H, Tan W H. An exact solution for laser amplification[J]. Acta Physica Sinica, 44, 1029-1034(1995).

    [40] Hardy A, Oron R. Signal amplification in strongly pumped fiber amplifiers[J]. IEEE Journal of Quantum Electronics, 33, 307-313(1997).

    [41] Lowdermilk W H, Murray J E. The multipass amplifier: theory and numerical analysis[J]. Journal of Applied Physics, 51, 2436(1980).

    [42] Wang W Y, Su J Q, Jing F et al. Study on the models of multi-pass amplification of nanosecond light pulse[J]. Chinese Journal of Lasers, 31, 424-426(2004).

    [43] Sobon G, Kaczmarek P, Antonczak A et al. Pulsed dual-stage fiber MOPA source operating at 1550 nm with arbitrarily shaped output pulses[J]. Applied Physics B, 105, 721-727(2011).

    [44] Eggleston J M, Frantz L M, Injeyan H et al. Deviation of the Frantz-Nodvik equation for zig-zag optical path, slab geometry laser amplifiers[J]. IEEE Journal of Quantum Electronics, 25, 1855-1862(1989).

    [45] Wang Y, Po H. Dynamic characteristics of double-clad fiber amplifiers for high-power pulse amplification[J]. Journal of Lightwave Technology, 21, 2262-2270(2003).

    [46] Chang L P, Fan W, Chen J L et al. High power pulse amplification of ytterbium-doped double-clad fiber amplifier[J]. Chinese Optics Letters, 5, 624-627(2007).

    [47] Liu R H, Cai X J, Yang L et al. Study on gain fluence curve of a laser pulse amplifier[J]. Acta Physica Sinica, 54, 3140-3143(2005).

    [48] Lin D, Baktash N, Berendt M et al. Radially polarized nanosecond Yb-doped fiber MOPA system incorporating temporal shaping[C], STh4O.3(2016).

    [49] Malinowski A, Vu K T, Chen K K et al. High power pulsed fiber MOPA system incorporating electro-optic modulator based adaptive pulse shaping[J]. Optics Express, 17, 20927-20937(2009).

    [50] Meng X G, Zha G S, Jia X D et al. Experimental research on amplifier stage self-excited oscillation of MOPA fiber[J]. Chinese Journal of Quantum Electronics, 35, 31-36(2018).

    [51] Su R T, Ma P F, Zhou P et al. High-peak-power temporally shaped nanosecond fiber laser immune to SPM-induced spectral broadening[J]. High Power Laser Science and Engineering, 7, e27(2019).

    [52] Auge F, Druon F, Balembois F et al. Theoretical and experimental investigations of a diode-pumped quasi-three-level laser: the Yb3+ doped Ca4GdO(BO3)3(Yb∶GdCOB) laser[J]. IEEE Journal of Quantum Electronics, 36, 598-606(2000).

    [53] Nie M M, Liu Q, Ji E C et al. Design of high-gain single-stage and single-pass Nd∶YVO4 amplifier pumped by fiber-coupled laser diodes: simulation and experiment[J]. IEEE Journal of Quantum Electronics, 52, 1-10(2016).

    [54] Nie M, Liu Q, Ji E C et al. Active pulse shaping for end-pumped Nd∶YVO4 amplifier with high gain[J]. Optics Letters, 42, 1051-1054(2017).

    [55] Jeong J, Cho S, Yu T J et al. Numerical extension of Frantz-Nodvik equation for double-pass amplifiers with pulse overlap[J]. Optics Express, 25, 3946-3953(2017).

    [56] Guo J T, Wang J F, Lu X H et al. Performance of active pulse shaping of high power multi-pass ring laser amplifier[J]. Proceedings of SPIE, 10964, 1096403(2018).

    [57] Kawasaki T, Yahia V, Taira T et al. Sub-ns pulse shaping of microchip laser under amplification (Conference Presentation)[J]. Proceedings of SPIE, 11259, 112590O(2020).