• Laser & Optoelectronics Progress
  • Vol. 57, Issue 6, 061012 (2020)
Qishu Qian1、2, Yihua Hu1、2、*, Nanxiang Zhao1、2, Minle Li1、2, and Fucai Shao3
Author Affiliations
  • 1State Key Laboratory of Pulsed Power Laser Technology, College of Electronic Engineering, National University of Defense Technology, Hefei, Anhui 230037, China
  • 2Anhui Provincial Key Laboratory of Electronic Restriction, Hefei, Anhui 230037, China
  • 3Military Representative Bureau of the Ministry of Equipment Development of the Central Military Commission in Beijing, Beijing 100191, China
  • show less
    DOI: 10.3788/LOP57.061012 Cite this Article Set citation alerts
    Qishu Qian, Yihua Hu, Nanxiang Zhao, Minle Li, Fucai Shao. Object Tracking Algorithm Based on Global Feature Matching Processing of Laser Point Cloud[J]. Laser & Optoelectronics Progress, 2020, 57(6): 061012 Copy Citation Text show less
    Point cloud target recognition process based on SVR selection
    Fig. 1. Point cloud target recognition process based on SVR selection
    SVR values of six objects for two LIDAR-object distances
    Fig. 2. SVR values of six objects for two LIDAR-object distances
    Point cloud target tracking flow based on global feature matching
    Fig. 3. Point cloud target tracking flow based on global feature matching
    Visualization of different datasets. (a) Dataset 1; (b) dataset 2
    Fig. 4. Visualization of different datasets. (a) Dataset 1; (b) dataset 2
    Object tracking results in the N th frame. (a)(g) N=40; (b)(h) N=80; (c)(i) N=120; (d)(j) N=160; (e)(k) N=200; (f)(l) N=240
    Fig. 5. Object tracking results in the N th frame. (a)(g) N=40; (b)(h) N=80; (c)(i) N=120; (d)(j) N=160; (e)(k) N=200; (f)(l) N=240
    Execution time of each part in object tracking based on different datasets. (a) Dataset 1; (b) dataset 2
    Fig. 6. Execution time of each part in object tracking based on different datasets. (a) Dataset 1; (b) dataset 2
    DescriptorHistogram lengthInformationPre-processionNormalization
    VFH308AngleNormalYes
    CVFH308AngleNormal, segmentationNone
    GRSD21DistanceNormal, voxelization, surface categorizationNone
    ESF640Angle, distance, areaNoneYes
    Table 1. Comparison of four global feature descriptors
    TargetSize /(m×m×m)Target speed /(m·s-1)Platform speed /(m·s-1)Pitch /(°)Yaw /(°)
    0340
    Jeep3.83×1.68×1.5120015-600-180
    20340
    Table 2. Parameters of the scene simulation
    DescriptorLIDAR-target range /m
    300600900120015001800
    VFH76.768.253.055.541.040.5
    CVFH89.390.091.583.574.047.8
    GRSD49.644.235.422.226.613.2
    ESF99.099.094.076.571.054.7
    Table 3. Recognition rate comparison of four feature descriptors%
    ParameterVFHCVFHGRSDESF
    Recognition rate without SVR selection /%55.879.431.982.4
    Dataset 1Recognition rate with SVR selection /%59.982.635.584.9
    Increased recognition rate /%4.13.23.62.5
    Execution time /ms3.64.531.039.0
    Recognition rate without SVR selection /%57.580.134.384.0
    Dataset 2Recognition rate with SVR selection /%62.383.338.686.7
    Increased recognition rate /%4.83.24.33.7
    Execution time /ms6.27.8109.0110.0
    Table 4. Recognition rate comparison with and without SVR selection
    ParameterN
    4080120160200240
    Dataset 1Accuracy without SVR selection /%50.071.372.774.175.380.3
    Accuracy with SVR selection /%55.175.179.980.483.287.7
    Dataset 2Accuracy without SVR selection /%81.382.080.580.381.782.5
    Accuracy with SVR selection /%86.386.783.385.084.386.0
    Table 5. Tracking accuracy of sight line in the Nth frame
    Qishu Qian, Yihua Hu, Nanxiang Zhao, Minle Li, Fucai Shao. Object Tracking Algorithm Based on Global Feature Matching Processing of Laser Point Cloud[J]. Laser & Optoelectronics Progress, 2020, 57(6): 061012
    Download Citation