• Laser & Optoelectronics Progress
  • Vol. 58, Issue 2, 0210010 (2021)
Liuya Gao, Dong Sun*, and Yixiang Lu
Author Affiliations
  • College of Electric Engineering and Automation, Anhui University, Hefei, Anhui 230601, China
  • show less
    DOI: 10.3788/LOP202158.0210010 Cite this Article Set citation alerts
    Liuya Gao, Dong Sun, Yixiang Lu. Face Detection Algorithm Based on a Lightweight Attention Mechanism Network[J]. Laser & Optoelectronics Progress, 2021, 58(2): 0210010 Copy Citation Text show less
    References

    [1] Viola P, Jones M. Rapid object detection using a boosted cascade of simple features[C]∥Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR), December 8-14, 2001, Ka.

    [2] Papageorgiou C P, Oren M, Poggio T. A general framework for object detection[C]∥Sixth International Conference on Computer Vision (IEEE Cat. No. 98CH36271), January 7-7, 1998, Bombay, India., 555-562(1998).

    [3] Dalal N, Triggs B. Histograms of oriented gradients for human detection[C]∥ Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR), June 20-25, 2005, San Diego, CA, US, 886-893(2005).

    [4] Cortes C, Vapnik V. Support-vector networks[J]. Machine Learning, 20, 273-297(1995).

    [5] Felzenszwalb P F, Girshick R B. McAllester D. Cascade object detection with deformable part models[C]∥2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, June 13-18, 2010, San Francisco, CA, USA., 2241-2248(2010).

    [6] Simonyan K. -09-04)[2020-05-30]. https:∥arxiv., org/abs/1409, 1556(2014).

    [7] Szegedy C, Liu W, Jia Y Q et al. Going deeper with convolutions[C]∥ Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 7-12, 2015, Boston, MA, USA., 1-9(2015).

    [8] He K M, Zhang X Y, Ren S Q et al. Deep residual learning for image recognition[C]∥ Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 27-30, 2016, Las Vegas, NV, USA., 770-778(2016).

    [9] He K M, Zhang X Y, Ren S Q et al. Spatial pyramid pooling in deep convolutional networks for visual recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 37, 1904-1916(2015). http://www.sciencedirect.com/science/article/pii/S0031320315004252

    [10] Girshick R. Fast R-CNN[C]∥ Proceedings of the 2015 IEEE International Conference on Computer Vision (ICCV), December 7-13, Santiago, Chile., 1440-1448(2015).

    [11] Ren S Q, He K M, Girshick R et al. Faster R-, 1137-1149(2017).

    [12] RedmonJ, DivvalaS, GirshickR, et al.You only look once: unified, real-time object detection[C]∥ Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 27-30, 2016, Las Vegas, NV, USA. New York: IEEE Press, 2016: 779- 788.

    [13] RedmonJ, FarhadiA. YOLO9000: better, faster, stronger[C]∥ Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), July 21-26, 2017, Honolulu, HI, USA. New York: IEEE Press, 2017: 6517- 6525.

    [14] Redmon J. -04-08)[2020-05-30]. https:∥arxiv., org/abs/1804, 02767(2018).

    [15] Liu W, Anguelov D, Erhan D et al[M]. SSD: single shot MultiBox detector, 21-37(2016).

    [16] Duan Z J, Li S B, Hu J J et al. Review of deep learning based object detection methods and their mainstream frameworks[J]. Laser & Optoelectronics Progress, 57, 120005(2020).

    [17] Jiang H Z, Learned-Miller E. Face detection with the faster R-CNN[C]∥2017 12th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2017), May 30-June 3, 2017, Washington, DC, USA., 650-657(2017).

    [18] Wang Y, Zheng J C. Real-time face detection based on YOLO[C]∥ Proceedings of the 2018 1st IEEE International Conference on Knowledge Innovation and Invention (ICKII), July 23-27, 2018, Jeju, South Korea., 221-224(2018).

    [19] Zhang J L, Wu X W. Hoi S C H, et al. Feature agglomeration networks for single stage face detection[J]. Neurocomputing, 380, 180-189(2020).

    [20] Ling Y, Chen Y. Salient object detection with multiscale context enhanced fully convolutional network[J]. Journal of Computer-Aided Design & Computer Graphics, 31, 2007-2016(2019).

    [21] Xie X L, Li C X, Yang X G et al. Salient object detection algorithm based on dual-attention recurrent convolution[J]. Acta Optica Sinica, 39, 0915005(2019).

    [22] Zhao B, Wang C P, Fu Q et al. Multi-scale infrared pedestrian detection based on deep attention mechanism[J]. Acta Optica Sinica, 40, 0504001(2020).

    [23] Wang R S, Tian J Z, Jin C L. Joint face detection and alignment using focal loss-based multi-task convolutional neural networks. [C]∥ Sun Z, He R, Feng J, et al. Biometric Recognition. Cham: Springer, 266-273(2019).

    [24] Ren Z J, Lin S Z, Li D W et al. Mask R-CNN object detection method based on improved feature pyramid[J]. Laser & Optoelectronics Progress, 56, 041502(2019).

    [25] Howard A, Sandler M, Chu G et al. Searching for mobilenetv3[C]∥ Proceedings of the IEEE International Conference on Computer Vision, October 27-November 2, 2019, Seoul, Korea., 1314-1324(2019).

    [26] Howard A G, Zhu M, Chen B et al. -04-17)[2020-05-30]. https:∥arxiv., org/abs/1704, 04861(2017).

    [27] SandlerM, HowardA, Zhu ML, et al.MobileNetV2: inverted residuals and linear bottlenecks[C]∥2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, June 18-23, 2018, Salt Lake City, UT, USA. New York: IEEE Press, 2018: 4510- 4520.

    [28] Lin T Y, Dollár P, Girshick R et al. Feature pyramid networks for object detection[C]∥2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), July 21-26, 2017, Honolulu, HI, USA., 936-944(2017).

    [29] YangS, LuoP, Loy CC, et al.WIDER FACE: a face detection benchmark[C]∥2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 27-30, 2016, Las Vegas, NV, USA. New York: IEEE Press, 2016: 5525- 5533.

    Liuya Gao, Dong Sun, Yixiang Lu. Face Detection Algorithm Based on a Lightweight Attention Mechanism Network[J]. Laser & Optoelectronics Progress, 2021, 58(2): 0210010
    Download Citation