• Acta Optica Sinica
  • Vol. 36, Issue 6, 616002 (2016)
Qian Guoquan1、*, Tang Guowu1, Qian Qi1, and Chen Ganxin2
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    DOI: 10.3788/aos201636.0616002 Cite this Article Set citation alerts
    Qian Guoquan, Tang Guowu, Qian Qi, Chen Ganxin. Study on Mid-Infrared Spectral Properties of Ho3+/Yb3+ Co-Doped Fluorogermanate Glasses[J]. Acta Optica Sinica, 2016, 36(6): 616002 Copy Citation Text show less
    References

    [1] Auzel F, Meichenin D, Poignant H. Laser cross-section and quantum yield of Er3+ at 2.7 μm in a ZrF4-based fluoride glass[J]. Electronics Letters, 1988, 24(15): 909-910.

    [2] Zhong H, Chen B, Ren G, et al.. 2.7 μm emission of Nd3+, Er3+ codoped tellurite glass[J]. Journal of Applied Physics, 2009, 106(8): 083114.

    [3] De Sousa D F, Zonetti L F C, Bell M J V, et al.. On the observation of 2.8 μm emission from diode-pumped Er3+- and Yb3+-doped low silica calcium aluminate glasses[J]. Applied Physics Letters, 1999, 74(7): 908-910.

    [4] Zhao Guoying, Fang Yongzheng, Zhang Na, et al.. Efficient emission of 2.7 μm from diode-pumped Er3+/Nd3+ co-doped bismuth germanate glass[J]. Chinese J Lasers, 2015, 42(7): 0706004.

    [6] Zhang Mingjie, Yang Anping, Zhang Bin, et al.. 3~5 μm luminescence of Dy3+-doped Ga-Sb-S chalcogenide glasses[J]. Chinese J Lasers, 2015, 42(8): 0806001.

    [7] He J, Zhou Z, Zhan H, et al.. 2.85 μm fluorescence of Ho-doped water-free fluorotellurite glasses[J]. Journal of Luminescence, 2014, 145(12): 507-511.

    [8] Johnson L F, Boyd G D, Nassau K. Optical maser characteristics of Ho3+ in CaWO4[J]. Proceedings of IRE, 1962, 50(87): 45.

    [9] Zhang L M, Wang Z X, Lu Z X, et al.. Synthesis of LiYF4:Yb, Er upconversion nanoparticles and its fluorescence properties[J]. Journal of Nanoscience and Nanotechnology, 2014, 14(6): 4710-4713.

    [10] Yu S Y, Zhi Y X, Su H Q. Hydrothermal synthesis and upconversion properties of CaF2:Er3+/Yb3+ nanocrystals[J]. Journal of Nanoscience and Nanotechnology, 2014, 14(5): 3380-3386.

    [11] Richards B, Jha A, Tsang Y, et al.. Tellurite glass lasers operating close to 2 μm[J]. Laser Physics Letters, 2010, 7(3): 177-193.

    [12] Rangel-Rojo R, Kosa T, Hajto E, et al.. Near-infrared optical nonlinearities in amorphous chalcogenides[J]. Optics Communications, 1994, 109(1): 145-150.

    [13] Walsh B M, Barnes N P. Comparison of Tm:ZBLAN and Tm:silica fiber lasers; spectroscopy and tunable pulsed laser operation around 1.9 μm[J]. Applied Physics B, 2004, 78(3-4): 325-333.

    [14] Geng J H, Wu J F, Jiang S B, et al.. Efficient operation of diode-pumped single-frequency thulium-doped fiber lasers near 2 μm[J]. Optics Letters, 2007, 32(4): 355-357.

    [15] Lilly C M, McLaughlin J M, Zhao H F, et al.. A multicenter study of ICU telemedicine reengineering of adult critical care[J]. CHEST Journal, 2014, 145(3): 500-507.

    [16] Brida D, Cirmi G, Manzoni C, et al.. Sub-two-cycle light pulses at 1.6 μm from an optical parametric amplifier[J]. Optics Letters, 2008, 33(7): 741-743.

    [17] Kostencka J, Kozacki T, Ku A, et al.. Accurate approach to capillary-supported optical diffraction tomography[J]. Optics Express, 2015, 23(6): 7908-7923.

    [18] Bayya S S, Chin G D, Sanghera J S, et al.. VIS-IR transmitting BGG glass windows[C]. SPIE, 2003, 5078: 208-215.

    [19] Guo Y Y, Li M, Hu L L, et al.. Intense 2.7 μm emission and structural origin in Er3+-doped bismuthate (Bi2O3-GeO2-Ga2O3-Na2O) glass[J]. Optics Letters, 2012, 37(2): 268-270.

    [20] Xu R R, Tian Y, Hu L L, et al.. Origin of 2.7 μm luminescence and energy transfer process of Er3+∶4I11/2→4I13/2 transition in Er3+/Yb3+ doped germanate glasses[J]. Journal of Applied Physics, 2012, 111(3): 033524.

    [21] Tian Y, Xu R R, Zhang L Y, et al.. Observation of 2.7 μm emission from diode-pumped Er3+/Pr3+-codoped fluorophosphate glass[J]. Optics Letters, 2011, 36(2): 109-111.

    [22] Jewell J M, Higby P L, Aggarwal I D. Properties of BaO-R2O3-Ga2O3-GeO2 (R=Y, Al, La, and Gd) glasses[J]. Journal of the American Ceramic Society, 1994, 77(3): 697-700.

    [23] Bai G X, Tao L L, Li K F, et al.. Enhanced light emission near 2.7 μm from Er-Nd co-doped germanate glass[J]. Optical Materials, 2013, 35(6): 1247-1250.

    [24] Li M, Bai G X, Guo Y Y, et al.. Investigation on Tm3+-doped silicate glass for 1.8 μm emission[J]. Journal of Luminescence, 2012, 132(7): 1830-1835.

    [25] Li K F, Zhang Q, Bai G X, et al.. Energy transfer and 1.8 μm emission in Tm3+/Yb3+ codoped lanthanum tungsten tellurite glasses[J]. Journal of Alloys and Compounds, 2010, 504(2): 573-578.

    [26] Yi L X, Wang M, Feng S Y, et al.. Emissions properties of Ho3+∶5I7→5I8 transition sensitized by Er3+ and Yb3+ in fluorophosphate glasses[J]. Optical Materials, 2009, 31(11): 1586-1590.

    [27] Peng B, Izumitani T. Optical properties, fluorescence mechanisms and energy transfer in Tm3+, Ho3+ and Tm3+-Ho3+ doped near-infrared laser glasses sensitized by Yb3+[J]. Optical Materials, 1995, 4(6): 797-810.

    [28] Yuan J, Shen S X, Chen D D, et al.. Efficient 2.0 μm emission in Nd3+/Ho3+ co-doped tungsten tellurite glasses for a diode-pump 2.0 μm laser[J]. Journal of Applied Physics, 2013, 113(17): 173507.

    [29] Wei T, Tian C, Cai M, et al.. Broadband 2 μm fluorescence and energy transfer evaluation in Ho3+/Er3+ codoped germanosilicate glass[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2015, 161: 95-104.

    [30] Xu R, Wang M, Tian Y, et al.. 2.05 μm emission properties and energy transfer mechanism of germanate glass doped with Ho3+, Tm3+, and Er3+[J]. Journal of Applied Physics, 2011, 109(5): 053503.

    [31] Zhang L, Yang Z, Tian Y, et al.. Comparative investigation on the 2.7 μm emission in Er3+/Ho3+ codoped fluorophosphate glass[J]. Journal of Applied Physics, 2011, 110(9): 093106.

    [32] Chen G X, Zhang Q Y, Yang G F, et al.. Mid-infrared emission characteristic and energy transfer of Ho3+-doped tellurite glass sensitized by Tm3+[J]. Journal of Fluorescence, 2007, 17(3): 301-307.

    [33] Mccumber D E. Theory of phonon-terminated optical masers[J]. Physical Review, 1964, 134(2A): A299-A306.

    [34] Huang F F, Cheng J M, Liu X Q, et al.. Ho3+/Er3+ doped fluoride glass sensitized by Ce3+ pumped by 1550 nm LD for efficient 2.0 μm laser applications[J]. Optics Express, 2014, 22(17): 20924-20935.

    CLP Journals

    [1] Liu Xueru, Xue Changxi. Optimization of Molding Process Parameters of Chalcogenide Glass Based on Finite Element Simulation[J]. Laser & Optoelectronics Progress, 2018, 55(8): 82203

    [2] Liang Lirong, Wang Feng, Qiu Zemin. Synthesization of (Bi,Er)2Ti2O7 Dielectric Thin Films by Pulse Laser Deposition Method and Its Up-Conversion Luminescence[J]. Laser & Optoelectronics Progress, 2017, 54(1): 13101

    [3] Liu Songbin, Chen Mengyao, Liu Shuifu, Niu Hu, Ye Xinyu, Hou Dejian, You Weixiong. Effect of Li+ Doping on Upconversion Luminescence Property of SrLu2O4∶Ho3+/Yb3+ Phosphors[J]. Acta Optica Sinica, 2017, 37(6): 616002

    Qian Guoquan, Tang Guowu, Qian Qi, Chen Ganxin. Study on Mid-Infrared Spectral Properties of Ho3+/Yb3+ Co-Doped Fluorogermanate Glasses[J]. Acta Optica Sinica, 2016, 36(6): 616002
    Download Citation