• Journal of Inorganic Materials
  • Vol. 36, Issue 12, 1323 (2021)
Yue WANG*, Changsong CUI, Shiwei WANG, and Zhongliang ZHAN
DOI: 10.15541/jim20210206 Cite this Article
Yue WANG, Changsong CUI, Shiwei WANG, Zhongliang ZHAN. Symmetrical La3+-doped Sr2Fe1.5Ni0.1Mo0.4O6-δ Electrode Solid Oxide Fuel Cells for Pure CO2 Electrolysis[J]. Journal of Inorganic Materials, 2021, 36(12): 1323 Copy Citation Text show less
References

[1] J ALBO, M ALVAREZ-GUERRA, P CASTAÑO et al. Towards the electrochemical conversion of carbon dioxide into methanol. Green Chemistry, 17, 2304-2324(2015). http://xlink.rsc.org/?DOI=C4GC02453B

[2] J FREUND H, W ROBERTS M. Surface chemistry of carbon dioxide. Surface Science Reports, 25, 225-273(1996). https://linkinghub.elsevier.com/retrieve/pii/S0167572996000076

[3] Y ZHENG, J WANG, B YU et al. A review of high temperature co-electrolysis of H2O and CO2 to produce sustainable fuels using solid oxide electrolysis cells (SOECs): advanced materials and technology. Chem. Soc. Rev., 46, 1427-1463(2017). http://xlink.rsc.org/?DOI=C6CS00403B

[4] S LIU, Q LIU, L LUO J. CO2-to-CO conversion on layered perovskite with in situ exsolved Co-Fe alloy nanoparticles: an active and stable cathode for solid oxide electrolysis cells. Journal of Materials Chemistry A, 4, 17521-17528(2016). http://xlink.rsc.org/?DOI=C6TA06365A

[5] V SINGH, H MUROYAMA, T MATSUI et al. Feasibility of alternative electrode materials for high temperature CO2 reduction on solid oxide electrolysis cell. Journal of Power Sources, 293, 642-648(2015). https://linkinghub.elsevier.com/retrieve/pii/S0378775315009908

[6] L YUE X, S IRVINE J T. Alternative cathode material for CO2 reduction by high temperature solid oxide electrolysis cells. Journal of the Electrochemical Society, 159, F442-F448(2012). https://iopscience.iop.org/article/10.1149/2.040208jes

[7] Y LI, X CHEN, Y YANG et al. Mixed-conductor Sr2Fe1.5Mo0.5O6-δ as robust fuel electrode for pure CO2 reduction in solid oxide electrolysis cell. ACS Sustainable Chemistry & Engineering, 5, 11403-11412(2017).

[8] H LÜ, L LIN, X ZHANG et al. In situ investigation of reversible exsolution/dissolution of CoFe alloy nanoparticles in a Co-doped Sr2Fe1.5Mo0.5O6-δ cathode for CO2 electrolysis. Advanced Materials, 32, 1906193(2020). https://onlinelibrary.wiley.com/toc/15214095/32/6

[9] X YUE, S IRVINE J T. Modification of LSCM-GDC cathodes to enhance performance for high temperature CO2 electrolysis using solid oxide electrolysis cells (SOECs). Journal of Materials Chemistry A, 5, 7081-7090(2017). http://xlink.rsc.org/?DOI=C6TA09421J

[10] L LU, C NI, M CASSIDY et al. Demonstration of high performance in a perovskite oxide supported solid oxide fuel cell based on La and Ca co-doped SrTiO3-δ. Journal of Materials Chemistry A, 4, 11708-11718(2016). http://xlink.rsc.org/?DOI=C6TA04074H

[11] W QI, Y GAN, D YIN et al. Remarkable chemical adsorption of manganese-doped titanate for direct carbon dioxide electrolysis. Journal of Materials Chemistry A, 2, 6904-6915(2014). http://xlink.rsc.org/?DOI=C4TA00344F

[12] S LIU, Q LIU, L LUO J. Highly stable and efficient catalyst with in situ exsolved Fe-Ni alloy nanospheres socketed on an oxygen deficient perovskite for direct CO2 electrolysis. ACS Catalysis, 6, 6219-6228(2016). https://pubs.acs.org/doi/10.1021/acscatal.6b01555

[13] Y TIAN, L ZHANG, Y LIU et al. A self-recovering robust electrode for highly efficient CO2 electrolysis in symmetrical solid oxide electrolysis cells. Journal of Materials Chemistry A, 7, 6395-6400(2019). http://xlink.rsc.org/?DOI=C9TA00643E

[14] Y LI, Z ZHAN, C XIA. Highly efficient electrolysis of pure CO2 with symmetrical nanostructured perovskite electrodes. Catalysis Science & Technology, 8, 980-984(2018).

[15] Q ZHANG Y, H LI J, F SUN Y et al. Highly active and redox- stable Ce-doped LaSrCrFeO based cathode catalyst for CO2 SOECs. ACS Applied Materials Interfaces, 8, 6457-6463(2016). https://pubs.acs.org/doi/10.1021/acsami.5b11979

[16] D SÃNCHEZ, A ALONSO J, M GARCÍA-HERNÁNDEZ et al. Microscopic nature of the electron doping effects in the double perovskite Sr2-xLaxFeMoO6(0≤x≤1) series. Journal of Materials Chemistry A, 13, 1771-1777(2003).

[17] T SUGAHARA, M OHTAKI, T SOUMA. Thermoelectric properties of double-perovskite oxide Sr2-xMxFeMoO6 (M=Ba, La). Journal of Ceramic Society Japan, 116, 1278-1282(2008). https://www.jstage.jst.go.jp/article/jcersj2/116/1360/116_1360_1278/_article

[18] X YANG, J CHEN, D PANTHI et al. Electron doping of Sr2FeMoO6-δ as high performance anode materials for solid oxide fuel cells. Journal of Materials Chemistry A, 7, 733-743(2019). http://xlink.rsc.org/?DOI=C8TA10061F

[19] F AZIZI, A KAHOUL, A AZIZI. Effect of La doping on the electrochemical activity of double perovskite oxide Sr2FeMoO6 in alkaline medium. Journal of Alloys and Compounds, 484, 555-560(2009). https://linkinghub.elsevier.com/retrieve/pii/S0925838809009074

[20] X YANG, D PANTHI, N HEDAYAT et al. Molybdenum dioxide as an alternative catalyst for direct utilization of methane in tubular solid oxide fuel cells. Electrochemistry Communications, 86, 126-129(2018). https://linkinghub.elsevier.com/retrieve/pii/S1388248117303399

[21] D SARMA D, P MAHADEVAN, S DASGUPTA T et al. Electronic structure of Sr2FeMoO6-δ. Physical Review Letter, 85, 2549-2552(2000). https://link.aps.org/doi/10.1103/PhysRevLett.85.2549

[22] Q LIU, X DONG, G XIAO et al. A novel electrode material for symmetrical SOFCs. Advanced Materials, 22, 5478-5482(2010). http://doi.wiley.com/10.1002/adma.v22.48

[23] N DAI, J FENG, Z WANG et al. Synthesis and characterization of B-site Ni-doped perovskites Sr2Fe1.5-xNixMo0.5O6-δ (x = 0, 0.05, 0.1, 0.2, 0.4) as cathodes for SOFCs. Journal of Materials Chemistry A, 1, 14147-14153(2013). http://xlink.rsc.org/?DOI=c3ta13607h

[24] X LU, Y YANG, Y DING et al. Mo-doped Pr0.6Sr0.4Fe0.8Ni0.2O3-δ as potential electrodes for intermediate-temperature symmetrical solid oxide fuel cells. Electrochimica Acta, 227, 33-40(2017). https://linkinghub.elsevier.com/retrieve/pii/S0013468616327293

[25] X PENG, Y TIAN, Y LIU et al. An efficient symmetrical solid oxide electrolysis cell with LSFM-based electrodes for direct electrolysis of pure CO2. Journal of CO2 Utilization, 36, 18-24(2020).

[26] R WANG, E DOGDIBEGOVIC, Y LAU G et al. Metal-supported solid oxide electrolysis cell (MS-SOEC) with significantly enhanced catalysis. Energy Technology, 7, 1801154-1801166(2019). https://onlinelibrary.wiley.com/toc/21944296/7/5

[27] Z CAO, B WEI, J MIAO et al. Efficient electrolysis of CO2 in symmetrical solid oxide electrolysis cell with highly active La0.3Sr0.7Fe0.7Ti0.3O3 electrode material. Electrochemistry Communications, 69, 80-83(2016). https://linkinghub.elsevier.com/retrieve/pii/S1388248116301369

[28] Y TIAN, H ZHENG, L ZHANG et al. Direct electrolysis of CO2 in symmetrical solid oxide electrolysis cell based on La0.6Sr0.4Fe0.8Ni0.2O3-δelectrode. Journal of The Electrochemical Society, 165, F17-F23(2018). https://iopscience.iop.org/article/10.1149/2.0351802jes

[29] Z YANG, C MA, N WANG et al. Electrochemical reduction of CO2 in a symmetrical solid oxide electrolysis cell with La0.4Sr0.6Co0.2Fe0.7Nb0.1O3-δ electrode. Journal of CO2 Utilization, 33, 445-451(2019).

[30] S XU, S LI, W YAO et al. Direct electrolysis of CO2 using an oxygen-ion conducting solid oxide electrolyzer based on La0.75Sr0.25Cr0.5Mn0.5O3-δ electrode. Journal of Power Sources, 230, 115-121(2013). https://linkinghub.elsevier.com/retrieve/pii/S0378775312019143

[31] K ADDO P, B MOLERO-SANCHEZ, M CHEN et al. CO/CO2 study of high performance La0.3Sr0.7Fe0.7Cr0.3O3-δ reversible SOFC electrodes. Fuel Cells, 15, 689-696(2015). http://doi.wiley.com/10.1002/fuce.v15.5

[32] C LU, B NIU, W YI et al. Efficient symmetrical electrodes of PrBaFe2-xCoxO5+δ (x=0, 0.2, 0.4) for solid oxide fuel cells and solid oxide electrolysis cells. Electrochimica Acta, 358, 136916-136927(2020). https://linkinghub.elsevier.com/retrieve/pii/S0013468620313098

Yue WANG, Changsong CUI, Shiwei WANG, Zhongliang ZHAN. Symmetrical La3+-doped Sr2Fe1.5Ni0.1Mo0.4O6-δ Electrode Solid Oxide Fuel Cells for Pure CO2 Electrolysis[J]. Journal of Inorganic Materials, 2021, 36(12): 1323
Download Citation