• Advanced Photonics
  • Vol. 4, Issue 4, 046003 (2022)
Bo Jiang1, Song Zhu1、2, Linhao Ren1, Lei Shi1、3、*, and Xinliang Zhang1、3
Author Affiliations
  • 1Huazhong University of Science and Technology, Wuhan National Laboratory for Optoelectronics, Wuhan, China
  • 2Nanyang Technological University, School of Electrical and Electronic Engineering, Singapore
  • 3Optics Valley Laboratory, Wuhan, China
  • show less
    DOI: 10.1117/1.AP.4.4.046003 Cite this Article Set citation alerts
    Bo Jiang, Song Zhu, Linhao Ren, Lei Shi, Xinliang Zhang. Simultaneous ultraviolet, visible, and near-infrared continuous-wave lasing in a rare-earth-doped microcavity[J]. Advanced Photonics, 2022, 4(4): 046003 Copy Citation Text show less
    References

    [1] F. Fan et al. A monolithic white laser. Nat. Nanotechnol., 10, 796-803(2015).

    [2] C. Zhang et al. Dual-color single-mode lasing in axially coupled organic nanowire resonators. Sci. Adv., 3, e1700225(2017).

    [3] Z. Liu et al. Dynamical color-controllable lasing with extremely wide tuning range from red to green in a single alloy nanowire using nanoscale manipulation. Nano Lett., 13, 4945-4950(2013).

    [4] J. Xu et al. Room-temperature dual-wavelength lasing from single-nanoribbon lateral heterostructures. J. Am. Chem. Soc., 134, 12394-12397(2012).

    [5] Y. Lu et al. Tunable lifetime multiplexing using luminescent nanocrystals. Nat. Photonics, 8, 32-36(2014).

    [6] H. H. Gorris, O. S. Wolfbeis. Photon-upconverting nanoparticles for optical encoding and multiplexing of cells, biomolecules, and microspheres. Angew. Chem. Int. Ed. Engl., 52, 3584-3600(2013).

    [7] R. Deng et al. Temporal full-colour tuning through non-steady-state upconversion. Nat. Nanotechnol., 10, 237-242(2015).

    [8] F. Wang et al. Simultaneous phase and size control of upconversion nanocrystals through lanthanide doping. Nature, 463, 1061-1065(2010).

    [9] H. A. Höppe. Recent developments in the field of inorganic phosphors. Angew. Chem. Int. Ed., 48, 3572-3582(2009).

    [10] F. Wang et al. Tuning upconversion through energy migration in core-shell nanoparticles. Nat. Mater., 10, 968-973(2011).

    [11] B. Zhou et al. Controlling upconversion nanocrystals for emerging applications. Nat. Nanotechnol., 10, 924-936(2015).

    [12] Z. Chen et al. Emerging and perspectives in microlasers based on rare-earth ions activated micro-/nanomaterials. Prog. Mater. Sci., 121, 100814(2021).

    [13] A. Godard. Infrared (2–12 μm) solid-state laser sources: a review. C. R. Phys., 8, 1100-1128(2007).

    [14] F. Vollmer, S. Arnold. Whispering-gallery-mode biosensing: label-free detection down to single molecules. Nat. Methods, 5, 591-596(2008).

    [15] Y. Zhi et al. Single nanoparticle detection using optical microcavities. Adv. Mater., 29, 1604920(2017).

    [16] K. D. Heylman et al. Optical microresonators for sensing and transduction: a materials perspective. Adv. Mater., 29, 1700037(2017).

    [17] T. J. Kippenberg et al. Dissipative kerr solitons in optical microresonators. Science, 361, eaan8083(2018).

    [18] T. J. Kippenberg, S. M. Spillane, K. J. Vahala. Kerr-nonlinearity optical parametric oscillation in an ultrahigh-Q toroid microcavity. Phys. Rev. Lett., 93, 083904(2004).

    [19] X. Shen et al. Raman laser from an optical resonator with a grafted single-molecule monolayer. Nat. Photonics, 14, 95-101(2020).

    [20] X. Zhang et al. Symmetry-breaking-induced nonlinear optics at a microcavity surface. Nat. Photonics, 13, 21-24(2019).

    [21] J.-H. Chen et al. Microcavity nonlinear optics with an organically functionalized surface. Phys. Rev. Lett., 123, 173902(2019).

    [22] W. Wang, L. Wang, W. Zhang. Advances in soliton microcomb generation. Adv. Photonics, 2, 034001(2020).

    [23] Z. Shen et al. Experimental realization of optomechanically induced non-reciprocity. Nat. Photonics, 10, 657-661(2016).

    [24] M. Aspelmeyer, T. J. Kippenberg, F. Marquardt. Cavity optomechanics. Rev. Mod. Phys., 86, 1391-1452(2014).

    [25] K. J. Vahala. Optical microcavities. Nature, 424, 839-846(2003).

    [26] J. Yang et al. Multiphysical sensing of light, sound and microwave in a microcavity Brillouin laser. Nanophotonics, 9, 2915-2925(2020).

    [27] L. He, Ş. K. Özdemir, L. Yang. Whispering gallery microcavity lasers. Laser Photonics Rev., 7, 60-82(2013).

    [28] S. Yang, Y. Wang, H. Sun. Advances and prospects for whispering gallery mode microcavities. Adv. Opt. Mater., 3, 1136-1162(2015).

    [29] O. Salehzadeh et al. Optically pumped two-dimensional MoS2 lasers operating at room-temperature. Nano Lett., 15, 5302-5306(2015).

    [30] T. J. Kippenberg et al. Demonstration of an erbium-doped microdisk laser on a silicon chip. Phys. Rev. A, 74, 051802(2006).

    [31] L. Yang et al. Erbium-doped and raman microlasers on a silicon chip fabricated by the sol-gel process. Appl. Phys. Lett., 86, 091114(2005).

    [32] S. Mehrabani, A. M. Armani. Blue upconversion laser based on thulium-doped silica microcavity. Opt. Lett., 38, 4346-4349(2013).

    [33] X.-F. Jiang et al. Whispering-gallery microcavities with unidirectional laser emission. Laser Photonics Rev., 10, 40-61(2016).

    [34] T. Lu et al. On-chip green silica upconversion microlaser. Opt. Lett., 34, 482-484(2009).

    [35] A. Fernandez-Bravo et al. Ultralow-threshold, continuous-wave upconverting lasing from subwavelength plasmons. Nat. Mater., 18, 1172-1176(2019).

    [36] H. Zhu et al. Amplified spontaneous emission and lasing from lanthanide-doped up-conversion nanocrystals. ACS Nano, 7, 11420-11426(2013).

    [37] W. L. Barnes et al. Absorption and emission cross section of Er3+ doped silica fibers. IEEE J. Quantum Electron., 27, 1004-1010(1991).

    [38] M. L. Gorodetsky, A. A. Savchenkov, V. S. Ilchenko. Ultimate Q of optical microsphere resonators. Opt. Lett., 21, 453-455(1996).

    [39] L.-D. Sun et al. Upconversion of rare earth nanomaterials. Annu. Rev. Phys. Chem., 66, 619-642(2015).

    [40] H.-S. Hsu, C. Cai, A. M. Armani. Ultra-low-threshold Er:Yb sol-gel microlaser on silicon. Opt. Express, 17, 23265-23271(2009).

    [41] W. V. Klitzing et al. Very low threshold green lasing in microspheres by up-conversion of IR photons. J. Opt. B Quantum Semiclass. Opt., 2, 204-206(2000).

    [42] S. Zhu et al. All-optical tunable microlaser based on an ultrahigh-Q erbium-doped hybrid microbottle cavity. ACS Photonics, 5, 3794-3800(2018).

    [43] J. M. Ward, Y. Yang, S. Nic Chormaic. Glass-on-glass fabrication of bottle-shaped tunable microlasers and their applications. Sci. Rep., 6, 25152(2016).

    [44] Y. Yang et al. Tunable erbium-doped microbubble laser fabricated by sol-gel coating. Opt. Express, 25, 1308-1313(2017).

    [45] L. Yang, D. K. Armani, K. J. Vahala. Fiber-coupled erbium microlasers on a chip. Appl. Phys. Lett., 83, 825-826(2003).

    [46] A. Jeantet et al. Widely tunable single-photon source from a carbon nanotube in the purcell regime. Phys. Rev. Lett., 116, 247402(2016).

    [47] C. Javerzac-Galy et al. Excitonic emission of monolayer semiconductors near-field coupled to high-Q microresonators. Nano Lett., 18, 3138(2018).

    [48] S. Abedrabb et al. Optical polarizability of erbium-oxygen complexes in sol-gel-based silica films. J. Phys. D Appl. Phys., 54, 135101(2021).

    [49] L. He et al. Detecting single viruses and nanoparticles using whispering gallery microlasers. Nat. Nanotechnol., 6, 428-432(2011).

    [50] D. G. O. Shea et al. An all-fiber coupled multicolor microspherical light source. IEEE Photonics Technol. Lett., 19, 1720-1722(2007).

    [51] C.-L. Zou et al. Taper-microsphere coupling with numerical calculation of coupled-mode theory. J. Opt. Soc. Am. B, 25, 1895-1898(2008).

    [52] Y. Liang et al. Competition of whispering gallery lasing modes in microwire with hexagonal cavity. J. Phys. D Appl. Phys., 54, 055107(2020).

    [53] X. Chen et al. Confining energy migration in upconversion nanoparticles towards deep ultraviolet lasing. Nat. Commun., 7, 10304(2016).

    [54] X. Chen et al. Energy migration upconversion in Ce(III)-doped heterogeneous core-shell-shell nanoparticles. Small, 13, 1701479(2017).

    [55] T. Wang et al. White-light whispering-gallery-mode lasing from lanthanide-doped upconversion NaYF4 hexagonal microrods. ACS Photonics, 4, 1539-1543(2017). https://doi.org/10.1021/acsphotonics.7b00301

    [56] A. Fernandez-Bravo et al. Continuous-wave upconverting nanoparticle microlasers. Nat. Nanotechnol., 13, 572-577(2018).

    [57] Y. Liu et al. Controlled assembly of upconverting nanoparticles for low-threshold microlasers and their imaging in scattering media. ACS Nano, 14, 1508-1519(2020).

    [58] Y. Shang et al. Low threshold lasing emissions from a single upconversion nanocrystal. Nat. Commun., 11, 6156(2020).

    [59] T. Sun et al. Ultralarge anti-Stokes lasing through tandem upconversion. Nat. Commun., 13, 1032(2022).

    Bo Jiang, Song Zhu, Linhao Ren, Lei Shi, Xinliang Zhang. Simultaneous ultraviolet, visible, and near-infrared continuous-wave lasing in a rare-earth-doped microcavity[J]. Advanced Photonics, 2022, 4(4): 046003
    Download Citation