[1] 林毅,周芃,陈彦明. 基于语义注意力的医学图像超分辨率方法[J]. 计算机科学, 2023, 50(S2): 1017-1022.LINY, ZHOUP, CHENY M. Medical image super-resolution method based on semantic attention[J]. Computer Science, 2023, 50(S2): 1017-1022. (in Chinese)
[2] M A KHAN, K JAVED, SALI KHAN et al. Human action recognition using fusion of multiview and deep features: an application to video surveillance. Multimedia Tools and Applications, 83, 14885-14911(2024).
[3] 易见兵, 陈俊宽, 曹锋, 等. 轻量级重参数化的遥感图像超分辨率重建网络设计[J]. 光学 精密工程, 2024, 32(2): 268-285.YIJ B, CHENJ K, CAOF, et al. Design of lightweight re-parameterized remote sensing image super-resolution network[J]. Opt. Precision Eng., 2024, 32(2): 268-285.(in Chinese)
[4] L G LUO, B S YI, Z Y WANG et al. Efficient lightweight network for video super-resolution. Neural Computing and Applications, 36, 883-896(2024).
[5] C DONG, C C LOY, K HE et al. Learning a Deep Convolutional Network for Image Super-Resolution, 184-199(2014).
[6] J KIM, J K LEE, K M LEE. Accurate Image Super-Resolution Using Very Deep Convolutional Networks, 1646-1654(2016).
[7] 周颖, 裴盛虎, 陈海永, 等. 基于多尺度自适应注意力的图像超分辨率网络[J]. 光学 精密工程, 2024, 32(6): 843-856.ZHOUY, PEIS H, CHENH Y, et al. Image super-resolution network based on multi-scale adaptive attention[J]. Opt. Precision Eng., 2024, 32(6): 843-856.(in Chinese)
[8] J LIU, J TANG, G S WU. Residual Feature Distillation Network for Lightweight Image Super-Resolution, 41-55(2020).
[9] M YASIR, I ULLAH, C CHOI. Depthwise channel attention network (DWCAN): an efficient and lightweight model for single image super-resolution and metaverse gaming. Expert Systems, 41(2024).
[10] X SUN, X LONG, D L HE et al. VSRNet: end-to-end video segment retrieval with text query. Pattern Recognition, 119, 108027(2021).
[11] Y HUANG, W WANG, L WANG. Bidirectional recurrent convolutional networks for multi-frame super-resolution. Advances in Neural Information Processing Systems, 28(2015).
[12] 王森, 祝阳, 张印辉, 等. 多阶段帧对齐的视频超分辨率重建网络[J]. 光学 精密工程, 2023, 31(16): 2430-2443.WANGS, ZHUY, ZHANGY H, et al. Multi-stage frame alignment video super-resolution network[J]. Opt. Precision Eng., 2023, 31(16): 2430-2443.(in Chinese)
[14] S W OH, J KANG et al. Deep Video Super-Resolution Network Using Dynamic Upsampling Filters Without Explicit Motion Compensation, 3224-3232(2018).
[15] X T WANG, K C K CHAN, K YU et al. EDVR: Video Restoration with Enhanced Deformable Convolutional Networks, 1954-1963(2019).
[16] Q S YAN, D GONG, J Q SHI et al. Dual-attention-guided network for ghost-free high dynamic range imaging. International Journal of Computer Vision, 130, 76-94(2022).
[17] D GONG, L Q LIU, V LE et al. Memorizing Normality to Detect Anomaly: Memory-Augmented Deep Autoencoder For Unsupervised Anomaly Detection, 1705-1714(2019).
[18] T F XUE, B A CHEN, J J WU et al. Video enhancement with task-oriented flow. International Journal of Computer Vision, 127, 1106-1125(2019).
[19] C LIU, D Q SUN. On Bayesian adaptive video super resolution. IEEE Transactions on Pattern Analysis and Machine Intelligence, 36, 346-360(2014).
[20] X TAO, H Y GAO, R J LIAO et al. Detail-revealing deep video super-resolution, 4482-4490(2017).
[21] Y P TIAN, Y L ZHANG, Y FU et al. TDAN: temporally-deformable alignment network for video super-resolution, 3357-3366(2020).
[22] X B GAO, W LU, D C TAO et al. Image quality assessment based on multiscale geometric analysis. IEEE Transactions on Image Processing: a Publication of the IEEE Signal Processing Society, 18, 1409-1423(2009).
[23] Z WANG, A C BOVIK, H R SHEIKH et al. Image quality assessment: from error visibility to structural similarity. IEEE Transactions on Image Processing, 13, 600-612(2004).
[25] Y L ZHANG, K P LI, K LI et al. Image Super-Resolution Using Very Deep Residual Channel Attention Networks, 294-310(2018).
[27] K C K CHAN, S C ZHOU, X Y XU et al. BasicVSR: improving video super-resolution with enhanced propagation and alignment, 5962-5971(2022).
[28] R J LIAO, X TAO, R Y LI et al. Video super-resolution via deep draft-ensemble learning, 531-539(2015).
[29] Z WANG, A C BOVIK, H R SHEIKH et al. Image quality assessment: from error visibility to structural similarity. IEEE Transactions on Image Processing, 13, 600-612(2004).
[30] L X LIU, B LIU, H HUANG et al. No-reference image quality assessment based on spatial and spectral entropies. Signal Processing: Image Communication, 29, 856-863(2014).