Fig. 1. Overall network structure
Fig. 2. Motion compensation structure
Fig. 3. Hybrid Spatial-Temporal Convolution
Fig. 4. 2D Spatial Convolution
Fig. 5. Similarity-based feature selection
Fig. 6. Visual results of our network and its variants
Fig. 7. Reconstruction visual comparisons of the state-of-the-art algorithms and proposed network on three datasets for ×4 SR
Fig. 8. [in Chinese]
模块 | 函数名 | 卷积核大小 |
---|
运动补偿 | Cf (·) | 3×3×128 | Cg (·) | 3×3×128 | DConv | 3×3×128 | 时空特征提取 | Ca (·) | 3×3×128 | CSC (·) | 3×3×128 | CTC (·) | 3×3×3×128 | Cfuse (·) | 3×3×128 | 选择性特征融合 | ![]() (·) | 3×3×128 | ![]() (·) | 1×1×128 | Ce(·) | 1×1×128 | | Up sampling | 3×3×48 |
|
Table 1. Architecture of network
模型 | 三维卷积 | 二维空间卷积 | 特征选择模块 | PSNR | SSIM |
---|
TC-VSR | √ | | | 29.47 | 0.869 9 | Deep-TC-VSR | √ | | | 29.79 | 0.874 8 | S-TC-VSR | √ | | √ | 29.72 | 0.873 4 | S-SC-VSR | | √ | √ | 29.61 | 0.871 3 | HTSC-VSR | √ | √ | | 29.59 | 0.873 5 | S-HTSC-VSR(Ours) | √ | √ | √ | 30.51 | 0.880 9 |
|
Table 2. Quantitative comparison of different activation functions on the SPMCS-11 dataset
深度 | 宽度 | 参数量/M | PSNR/dB | SSIM |
---|
8 | 64 | 3.9 | 30.21 | 0.870 1 | 8 | 128 | 5.2 | 30.27 | 0.874 4 | 10 | 64 | 6.8 | 30.43 | 0.875 2 | 10 | 128 | 9.7 | 30.51 | 0.880 9 |
|
Table 3. Network performance of different widths and depths
| MSE loss | L1 loss | Charbonnier loss |
---|
PSNR | 27.28 | 27.36 | 27.43 |
|
Table 4. Average value of all video frames of different Loss Functions on the Vid4 dataset
片段名 | Bicubic | RCAN[25] | DUF[14] | TDAN[21] | VSR-Transformer[26] | BasicVSR++[27] | Ours |
---|
Calendar | 20.39/0.572 0 | 22.31/0.724 8 | 24.04/0.811 0 | 23.20/0.768 9 | 24.14/0.815 7 | 24.23/0.820 9 | 24.20/0.821 2 | City | 25.16/0.602 8 | 26.07/0.693 8 | 28.27/0.831 3 | 27.18/0.771 6 | 27.87/0.811 4 | 28.01/0.813 7 | 28.03/0.814 1 | Foliage | 23.47/0.566 6 | 24.69/0.662 8 | 26.41/0.770 9 | 25.64/0.728 4 | 26.29/0.761 3 | 26.34/0.765 4 | 26.39/0.766 5 | Walk | 26.10/0.797 4 | 28.64/0.871 8 | 30.30/0.914 1 | 29.80/0.894 0 | 30.91/0.910 9 | 31.11/0.915 4 | 31.09/0.915 7 | Average | 23.78/0.634 7 | 25.43/0.738 3 | 27.26/0.831 8 | 26.46/0.790 7 | 27.30/0.824 8 | 27.42/0.828 9 | 27.43/0.829 4 |
|
Table 5. Quantitative comparisons of different algorithms for scale factor ×4 on Vid4 dataset(PSNR(dB)/SSIM)
片段名 | Bicubic | RCAN[25] | DUF[14] | TDAN[21] | VSR-Transformer[26] | BasicVSR++[27] | Ours |
---|
Car_05 | 27.75/0.782 5 | 29.84/0.848 3 | 30.77/0.870 5 | 30.59/0.865 3 | 32.13/0.903 2 | 32.31/0.905 4 | 32.42/0.906 3 | hdclub_003 | 19.42/0.486 3 | 20.39/0.610 0 | 22.06/0.742 9 | 21.34/0.687 9 | 22.11/0.738 7 | 22.19/0.744 3 | 22.17/0.741 9 | hitachi_isee5 | 19.61/0.593 8 | 23.58/0.837 1 | 25.75/0.892 7 | 24.59/0.856 7 | 26.50/0.906 9 | 26.73/0.909 7 | 26.74/0.912 3 | hk004_001 | 28.54/0.800 3 | 31.72/0.862 8 | 32.96/0.898 4 | 32.27/0.882 5 | 33.48/0.904 6 | 33.59/0.905 1 | 33.66/0.904 5 | HKVTG_004 | 27.46/0.683 1 | 28.77/0.765 0 | 29.15/0.785 5 | 29.11/0.778 8 | 29.57/0.798 3 | 29.60/0.798 7 | 29.55/0.801 3 | jvc_009 | 25.40/0.755 8 | 28.29/0.872 2 | 29.17/0.895 9 | 28.90/0.883 2 | 30.46/0.919 5 | 30.74/0.921 1 | 30.91/0.921 6 | NYVTG_006 | 28.45/0.801 4 | 30.99/0.886 0 | 32.32/0.905 8 | 31.90/0.899 6 | 33.32/0.925 1 | 33.56/0.926 9 | 34.11/0.927 4 | PRVTG_012 | 25.63/0.713 6 | 26.63/0.781 1 | 27.35/0.816 4 | 27.16/0.805 6 | 27.67/0.825 3 | 27.79/0.828 1 | 27.84/0.827 4 | RMVTG_011 | 23.96/0.657 3 | 26.05/0.757 4 | 27.53/0.811 5 | 26.95/0.792 4 | 27.71/0.819 7 | 27.81/0.823 4 | 27.94/0.825 2 | veni3_011 | 29.47/0.897 9 | 34.54/0.962 5 | 34.64/0.967 6 | 34.68/0.964 5 | 36.53/0.974 5 | 36.57/0.974 8 | 37.16/0.975 2 | veni5_015 | 27.41/0.848 3 | 31.01/0.926 2 | 31.89/0.936 7 | 31.30/0.927 5 | 32.77/0.944 9 | 33.17/0.947 3 | 33.12/0.946 6 | Average | 25.73/0.739 1 | 28.35/0.828 1 | 29.42/0.865 9 | 28.98/0.849 5 | 30.20/0.878 2 | 30.37/0.880 4 | 30.51/0.880 9 |
|
Table 6. Quantitative comparisons of different algorithms for scale factor ×4 on SPMCS-11 dataset(PSNR(dB)/SSIM)
算法 | 慢速运动 | 中速运动 | 快速运动 | Average |
---|
Bicubic | 29.34/0.833 0 | 31.29/0.870 8 | 34.07/0.905 0 | 31.32/0.868 4 | RCAN[25] | 32.92/0.902 8 | 35.33/0.926 5 | 38.45/0.945 3 | 35.32/0.924 5 | DUF[14] | 33.38/0.910 7 | 36.69/0.944 2 | 38.86/0.950 8 | 36.35/0.938 3 | TDAN[21] | 33.17/0.906 5 | 36.05/0.936 9 | 38.70/0.949 1 | 35.87/0.932 5 | VSR-Transformer[26] | 34.43/0.923 2 | 37.69/0.951 7 | 40.26/0.961 3 | 37.42/0.947 3 | BasicVSR++[27] | 34.58/0.925 6 | 37.75/0.952 7 | 40.49/0.962 4 | 37.52/0.948 6 | Ours | 34.53/0.924 6 | 37.81/0.953 5 | 40.56/0.963 3 | 37.56/0.949 0 | 片段数量 | 1 616 | 4 983 | 1 225 | 7 824 | 平均流大小 | 0.6 | 2.5 | 8.3 | 3.0 |
|
Table 7. Quantitative comparisons of different algorithms for scale factor ×4 on Vimeo-90K-T dataset(PSNR(dB)/SSIM)
评估指标 | Bicubic | RCAN[25] | TDAN[21] | BasicVSR++[27] | Ours |
---|
NIQE↓ | 7.58 | 6.29 | 6.56 | 6.11 | 6.05 | SSEQ↓ | 54.40 | 46.32 | 44.26 | 41.17 | 40.59 |
|
Table 8. Quantitative comparisons on the real-world dataset
算法 | PSNR/dB | SSIM | 参数量/M | FLOPs/109 | 平均运行时间/s |
---|
RCAN[25] | 28.35 | 0.828 1 | 15.6 | 261.46 | 1.586 | DUF[14] | 29.42 | 0.865 9 | 5.8 | 92.97 | 0.573 | 3DSRNet[13] | 28.98 | 0.849 5 | 15.9 | 127.49 | 0.778 | VSR-Transformer[26] | 30.20 | 0.878 2 | 43.8 | 834.01 | 1.153 | BasicVSR++[27] | 30.37 | 0.880 4 | 6.4 | 11.07 | 0.067 | Ours | 30.51 | 0.880 9 | 9.7 | 19.04 | 0.115 |
|
Table 9. Average running time on SPMCS-11 dataset for ×4 SR