• Chinese Journal of Quantum Electronics
  • Vol. 42, Issue 1, 48 (2025)
WU Renglai1,2,*, TANG Jiawei1, HUANG Kaijian1,2, XUE Yi1, and LI Qiaoxuan1
Author Affiliations
  • 1School of Electronic Information and Electrical Engineering, Huizhou University, Huizhou 516007, China
  • 2Guangdong Provincial Key Laboratory of Electronic Functional Materials and Devices, Huizhou University,Huizhou 516007, China
  • show less
    DOI: 10.3969/j.issn.1007-5461.2025.01.005 Cite this Article
    Renglai WU, Jiawei TANG, Kaijian HUANG, Yi XUE, Qiaoxuan LI. Excitation properties of plasmons in double Au atomic chain system[J]. Chinese Journal of Quantum Electronics, 2025, 42(1): 48 Copy Citation Text show less
    References

    [1] Zhang Z Y, Wang L N, Hu H F et al. A high figure of merit localized surface plasmon sensor based on a gold nanograting on the top of a gold planar film[J]. Chinese Physics B, 22, 104213(2013).

    [2] Li J W, Wang C, Bing P B et al. Study on circular dichroism spectral sensing properties of chiral plasmonic metasurface[J]. Chinese Journal of Quantum Electronics, 37, 257-265(2020).

    [3] Singh M K, Verma V K, Pal S et al. Antimonene mediated long-range SPR imaging sensor with ultrahigh imaging sensitivity and figure of merit[J]. Optical Materials, 121, 111484(2021).

    [4] Wang Z Y, Hu B, Niu Z R et al. Terahertz surface plasmon polaritons travelling on laser-induced porous graphene[J]. Applied Physics Letters, 120, 181701(2022).

    [5] Ren Z Y, Chen L P, Liu X M et al. Preparation, characterization and simulation of Al@SiO2 nanoparticle composite films with infrared-visible stealth[J]. Infrared Physics & Technology, 111, 103472(2020).

    [6] Puértolas B, Comesaña-Hermo M, Besteiro L V et al. Challenges and opportunities for renewable ammonia production via plasmon-assisted photocatalysis[J]. Advanced Energy Materials, 12, 2103909(2022).

    [7] Hou W B, Cronin S B. A review of surface plasmon resonance-enhanced photocatalysis[J]. Advanced Functional Materials, 23, 1612-1619(2013).

    [8] Awal M A, Ahmed Z, Talukder M A. An efficient plasmonic photovoltaic structure using silicon strip-loaded geometry[J]. Journal of Applied Physics, 117, 063109(2015).

    [9] Zeng K, Fan X D, Wang D L et al. Modulating of the coupling between graphene plasmon and substrate's phonon by changing dielectric environment[J]. Chinese Journal of Quantum Electronics, 37, 138-143(2020).

    [10] Wei H, Li Z P, Tian X R et al. Quantum dot-based local field imaging reveals plasmon-based interferometric logic in silver nanowire networks[J]. Nano Letters, 11, 471-475(2011).

    [11] Ma R M, Ota S, Li Y M et al. Explosives detection in a lasing plasmon nanocavity[J]. Nature Nanotechnology, 9, 600-604(2014).

    [12] Genevet P, Wintz D, Ambrosio A et al. Controlled steering of Cherenkov surface plasmon wakes with a one-dimensional metamaterial[J]. Nature Nanotechnology, 10, 804-809(2015).

    [13] Wang S M, Cheng Q Q, Gong Y X et al. A 14 × 14 μm2 footprint polarization-encoded quantum controlled-NOT gate based on hybrid waveguide[J]. Nature Communications, 7, 11490(2016).

    [14] Zhang Y, Meng Q S, Zhang L et al. Sub-nanometre control of the coherent interaction between a single molecule and a plasmonic nanocavity[J]. Nature Communications, 8, 15225(2017).

    [15] Zhang H C, Cui T J, Luo Y et al. Active digital spoof plasmonics[J]. National Science Review, 7, 261-269(2020).

    [16] Zhang S P, Wei H, Bao K et al. Chiral surface plasmon polaritons on metallic nanowires[J]. Physical Review Letters, 107, 096801(2011).

    [17] Xie Y B, Liu Z Y, Wang Q J et al. Controlling the state of polarization via optical nanoantenna feeding with surface plasmon polaritons[J]. Applied Physics Letters, 108, 131102(2016).

    [18] Wei H, Zhang S P, Tian X R et al. Highly tunable propagating surface plasmons on supported silver nanowires[J]. Proceedings of the National Academy of Sciences of the United States of America, 110, 4494-4499(2013).

    [19] Sun M D, Kik P G. Light trapping transparent electrodes with a wide-angle response[J]. Optics Express, 29, 24989-24999(2021).

    [20] Wallis T M, Nilius N, Ho W. Electronic density oscillations in gold atomic chains assembled atom by atom[J]. Physical Review Letters, 89, 236802(2002).

    [21] Wei Q H, Su K H, Durant S et al. Plasmon resonance of finite one-dimensional Au nanoparticle chains[J]. Nano Letters, 4, 1067-1071(2004).

    [22] Yan J, Gao S W. Plasmon resonances in linear atomic chains: Free-electron behavior and anisotropic screening of d electrons[J]. Physical Review B, 78, 235413(2008).

    [23] Yan J, Yuan Z, Gao S W. End and central plasmon resonances in linear atomic chains[J]. Physical Review Letters, 98, 216602(2007).

    [24] Liu D D, Zhang H. A time-dependent density functional theory investigation of plasmon resonances of linear Au atomic chains[J]. Chinese Physics B, 20, 097105(2011).

    [25] Liu D D, Zhang H, Cheng X L. Plasmon resonances and electron transport in linear sodium atomic chains[J]. Journal of Applied Physics, 112, 053707(2012).

    [26] Chen J, Lai L Q, Yang X et al. On the existence of a local dipolar plasmon mode in doped small gold atomic arrays[J]. Physical Review B, 101, 085421(2020).

    [27] Chen J, Lai L Q, Quan J et al. Substrate polarization effects on the plasmon excitations of small Na atomic chains on Si surfaces[J]. Physical Review B, 103, 125417(2021).

    [28] Wu R L, Quan J, Sun M T. Influence of the external field on the excitation properties of plasmon in linear atomic chain[J]. Scientific Reports, 8, 12563(2018).

    [29] Yin H F, Zhang H. Collectivity of plasmon excitations in small sodium clusters with planar structure[J]. Physica B: Condensed Matter, 407, 416-420(2012).

    [30] Wang B J, Ke S H. Time-dependent density functional theory studies of plasmons in parallel double sodium atomic chains[J]. Advanced Materials Research, 602/603/604, 883-886(2012).

    [31] Xue H J, Hao D P, Zhang M et al. Plasmon excitations in the dimers formed by atom chains[J]. Physica E: Low-Dimensional Systems and Nanostructures, 86, 292-296(2017).

    [32] Wu R L, Quan J, Tian C H et al. Transformation from quantum to classical mode: The size effect of plasmon in 2D atomic cluster system[J]. Scientific Reports, 9, 6641(2019).

    [33] Mironov G I. Investigation of the Au16 fullerene in the Hubbard model[J]. Physics of the Solid State, 50, 188-194(2008).

    Renglai WU, Jiawei TANG, Kaijian HUANG, Yi XUE, Qiaoxuan LI. Excitation properties of plasmons in double Au atomic chain system[J]. Chinese Journal of Quantum Electronics, 2025, 42(1): 48
    Download Citation