[1] Cooper M. A., Label-free Biosensors: Techniques and Applications (Cambridge University Press, New York, 2009).
[2] Homola J., Surface plasmon resonance sensors for detection of chemical and biological species, Chem. Rev. 108 (2008) 462–492.
[3] Karlsson R., SPR for molecular interaction analysis: a review of emerging application areas, J. Mol. Recogn. 17 (2004) 151–161.
[4] Homola J., Yee S. S. and Gauglitz G., Surface plasmon resonance sensors: review, Sens. Actuators B, Chem. 54 (1999) 3–15.
[5] Liu L., Ma S. H., Ji Y. H., Chong X. Y., Liu Z. Y., He Y. H. and Ma H., A two-dimensional polarization interferometry based parallel scan angular surface plasmon resonance biosensor, Rev. of Sci. Instrum. 82 (2011) 023109.
[6] Springer T. and Homola J., Biofunctionalized gold nanoparticles for SPR-biosensor-based detection of CEA in blood plasma, Anal. Bioanal. Chem. 404 (2012) 2869–2875.
[7] Suherman , Morita K. and Kawaguchi T., Effect of alkanethiol molecular structure on sensitivity of surface plasmon resonance sensor, Sens. Actuators B, Chem 210 (2015) 768–775.
[8] Zhang P. F., Liu L., He Y. H., Ji Y. H., Guo J. and Ma H., Temperature-regulated surface plasmon resonance imaging system for bioaffinity sensing, Plasmonics 11 (2016) 771–779.
[9] Lee H., Dellatore S. M., Miller W. M. and Messersmith P. B., Mussel-inspired surface chemistry for multifunctional coatings, Science 318 (2007) 426–430.
[10] Zhou P., Deng Y., Lyu B., Zhang R., Zhang H., Ma H., Lyu Y. and Wei S., Rapidly-deposited polydopamine coating via high temperature and vigorous stirring, formation, characterization and biofunctional evaluation, Plos One 9 (2014) e113087.
[11] Shi H., Liu Z. Y., Wang X. X., Guo J., Liu L., Luo L., Guo J. H., Ma H., Sun S. Q. and He Y. H., A symmetrical optical waveguide based surface plasmon resonance biosensing system, Sens. Actuators B, Chem. 185 (2013) 91–96.
[12] Li A., Guo Z. Y., Peng Q., Du C., Han X., Liu L., Guo J., He Y. H. and Ji Y. H., A saccharides sensor developed by symmetrical optical waveguide-based surface plasmon resonance, J. Innov. Opt. Health Sci. 8 (2015) 1550003. Link,
[13] Liu Z. Y., Peng Q., Shi H., Sun S. Q., Guo J., Wang X. X., Liu L., Ji Y. H., Guo J. H., Ma H. and He Y. H., MgF2-Au-MgF2-polydopamine based surface plasmon resonance sensor and its application in biomedical systems, Analy. Methods 5 (2013) 6306–6311.
[14] Rego S. J., Vale G. M., Luz G. M., Mano J. F. and Alves N. M., Adhesive bioactive coatings inspired by sea life, Langmuir 32 (2016) 560–568.
[15] Zhang P. F., Liu L., He Y. H., Xu Z. H., Ji Y. H. and Ma H., One-dimensional angular surface plasmon resonance imaging based array thermometer, Sens. Actuators B, Chem. 207 (2015) 254–261.
[16] Zhang P. F., Liu L., He Y. H., Shen Z. Y., Guo J., Ji Y. H. and Ma H., Non-scan and real-time multichannel angular surface plasmon resonance imaging method, Appl. Opt. 53 (2014) 6037–6042.
[17] Piliarik M. and Homola J., Surface plasmon resonance (SPR) sensors, approaching their limits, Opt. Exp. 17 (2009) 16505–16517.
[18] Zhang P. F., Liu L., He Y. H., Ji Y. H. and Ma H., Self-referenced plasmon waveguide resonance sensor using different waveguide modes, J. Sens. 2015 (2015) 945908.
[19] Leeden M. C., Are conformational changes, induced by osmotic pressure variations, the underlying mechanism of controlling the adhesive activity of mussel adhesive proteins , Langmuir 21 (2005) 11373–11379.
[20] Lee H., Rho J. and Messersmith P. B., Facile conjugation of biomolecules onto surfaces via mussel adhesive protein inspired coating, Adv. Mater. 21 (2009) 431–434.
[21] Liu Y. X., Liu L., He Y. H., Zhu L. and Ma H., Decoding of quantum dots encoded microbeads using a hyperspectral fluorescence imaging method, Anal. Chem. 87 (2015) 5286–5293.
[22] Liu Y. X., Liu L., He Y. H., He Q. H. and Ma H., Quantum-dots-encoded-microbeads based molecularly imprinted polymer, Biosens. Bioelectron. 77 (2016) 886–893.