• Matter and Radiation at Extremes
  • Vol. 6, Issue 6, 068201 (2021)
Xiaohua Zhang1、2, Yaping Zhao1, Fei Li1, and Guochun Yang1、2、a)
Author Affiliations
  • 1State Key Laboratory of Metastable Materials Science and Technology and Key Laboratory for Microstructural Material Physics of Hebei Province, School of Science, Yanshan University, Qinhuangdao 066004, China
  • 2Centre for Advanced Optoelectronic Functional Materials Research and Key Laboratory for UV Light-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, Changchun 130024, China
  • show less
    DOI: 10.1063/5.0065287 Cite this Article
    Xiaohua Zhang, Yaping Zhao, Fei Li, Guochun Yang. Pressure-induced hydride superconductors above 200 K[J]. Matter and Radiation at Extremes, 2021, 6(6): 068201 Copy Citation Text show less
    References

    [1] H.Kamerlingh Onnes. The superconductivity of mercury. Comm. Phys. Lab. Univ. Leiden, 122, 122(1911).

    [2] Y. Y.Xue, J. G.Lin, L.Beauvais, R. L.Meng, F.Chen, Z. J.Huang, Y. Y.Sun, C. W.Chu, L.Gao. Study of superconductivity in the Hg-Ba-Ca-Cu-O system. Physica C, 213, 261(1993).

    [3] R. L.Meng, L.Gao, C. W.Chu, H. K.Mao, Y. Y.Xue, D.Ramirez, Q.Xiong, J. H.Eggert, F.Chen. Superconductivity up to 164 K in HgBa2Cam−1CumO2m+2+δ (m = 1, 2, and 3) under quasihydrostatic pressures. Phys. Rev. B, 50, 4260(1994).

    [4] E. K. U.Gross, S.Massidda, A.Floris, A.Sanna, G.Profeta, A.Continenza, P.Cudazzo. Ab initio description of high-temperature superconductivity in dense molecular hydrogen. Phys. Rev. Lett., 100, 257001(2008).

    [5] Y.Wang, T.Cui, Q.Li, L.Zhang, G.Zou, Z.He, Y.Niu, Y.Ma. Ab initio prediction of superconductivity in molecular metallic hydrogen under high pressure. Solid State Commun., 141, 610(2007).

    [6] H. Y.Geng. Public debate on metallic hydrogen to boost high pressure research. Matter Radiat. Extremes, 2, 275(2017).

    [7] J. M.McMahon, D. M.Ceperley. High-temperature superconductivity in atomic metallic hydrogen. Phys. Rev. B, 84, 144515(2011).

    [8] R. T.Howie, E.Gregoryanz, B.Li, C.Ji, P.Dalladay-Simpson, H.-K.Mao. Everything you always wanted to know about metallic hydrogen but were afraid to ask. Matter Radiat. Extremes, 5, 038101(2020).

    [9] N. W.Ashcroft. Metallic hydrogen: A high-temperature superconductor?. Phys. Rev. Lett., 21, 1748(1968).

    [10] A.Continenza, S.Massidda, P.Cudazzo, E. K. U.Gross, A.Floris, A.Sanna, G.Profeta. Electron-phonon interaction and superconductivity in metallic molecular hydrogen. II. Superconductivity under pressure. Phys. Rev. B, 81, 134506(2010).

    [11] D. M.Ceperley, J. M.McMahon. Erratum: High-temperature superconductivity in atomic metallic hydrogen. Phys. Rev. B, 85, 219902(2012).

    [12] N. W.Ashcroft. Hydrogen dominant metallic alloys: High temperature superconductors?. Phys. Rev. Lett., 92, 187002(2004).

    [13] S.Ying, L.Han-Yu, M.Yan-Ming. Progress on hydrogen-rich superconductors under high pressure. Acta Phys. Sin., 70, 017407(2021).

    [14] L.Boeri, G.Profeta, M.Eremets, R.Arita, A.Sanna, J. A.Flores-Livas. A perspective on conventional high-temperature superconductors at high pressure: Methods and materials. Phys. Rep., 856, 1(2020).

    [15] A. R.Oganov, A. G.Kvashnin, D. V.Semenok, I. A.Savkin, I. A.Kruglov. On distribution of superconductivity in metal hydrides. Curr. Opin. Solid State Mater. Sci., 24, 100808(2020).

    [16] G.Gao, Y.Ma, X.Li, Y.Li, H.Wang. Hydrogen-rich superconductors at high pressures. Wiley Interdiscip. Rev.: Comput. Mol. Sci., 8, e1330(2018).

    [17] Y.Feng, H. Y.Lv, C. L.Yang, W. J.Li, G. H.Zhong, M.Chen. Superconductivity of light-metal hydrides. J. Chin. Chem. Soc., 66, 1246(2019).

    [18] U.Pinsook. In search for near-room-temperature superconducting critical temperature of metal superhydrides under high pressure: A review. J. Met., Mater. Miner., 30, 31(2020).

    [19] J.Hao, J.Shi, Y.Li, K.Gao, J.Kuang, J.Ma, W.Cui, J.Chen. Metal-element-incorporation induced superconducting hydrogen clathrate structure at high pressure. Chin. Phys. Lett., 38, 027401(2021).

    [20] B.Liu, Y.Liu, T.Cui, Z.Shao, D.Duan, Y.Ma. Structure and superconductivity of hydrides at high pressures. Natl. Sci. Rev., 4, 121(2016).

    [21] H.Liu, Y.Sun, J.Lv, Y.Xie, Y.Ma. Route to a superconducting phase above room temperature in electron-doped hydride compounds under high pressure. Phys. Rev. Lett., 123, 097001(2019).

    [22] N.Dasenbrock-Gammon, H.Vindana, R. P.Dias, K.Vencatasamy, M.Debessai, A.Salamat, K. V.Lawler, R.McBride, E.Snider. Room-temperature superconductivity in a carbonaceous sulfur hydride. Nature, 586, 373(2020).

    [23] T.Muramatsu, T. A.Strobel, W. K.Wanene, R. J.Hemley, D.Chandra, V. V.Struzhkin, E.Vinitsky, M.Somayazulu. Metallization and superconductivity in the hydrogen-rich ionic salt BaReH9. J. Phys. Chem. C, 119, 18007(2015).

    [24] S.Zhang, G.Yang, L.Zhu, H.Liu. Structure and electronic properties of Fe2SH3 compound under high pressure. Inorg. Chem., 55, 11434(2016).

    [25] W.von der Linden, C.Kokail, L.Boeri. Prediction of high-Tc conventional superconductivity in the ternary lithium borohydride system. Phys. Rev. Mater., 1, 074803(2017).

    [26] B.Liu, T.Cui, H.Yu, X.Huang, D.Duan, Y.Ma, F.Tian, H.Liu, Z.Shao, D.Li. Divergent synthesis routes and superconductivity of ternary hydride MgSiH6 at high pressure. Phys. Rev. B, 96, 144518(2017).

    [27] M.Rahm, N. W.Ashcroft, R.Hoffmann. Ternary gold hydrides: Routes to stable and potentially superconducting compounds. J. Am. Chem. Soc., 139, 8740(2017).

    [28] D.Li, F.-B.Tian, T.Cui, Z.Liu, S.-L.Wei, D.-F.Duan, Y.Liu, B.-B.Liu. Pressure-induced superconducting ternary hydride H3SXe: A theoretical investigation. Front. Phys., 13, 137107(2018).

    [29] X.Du, J.Lin, A.Bergara, X.Zhang, G.Yang, S.Zhang. Phase diagrams and electronic properties of B-S and H-B-S systems under high pressure. Phys. Rev. B, 100, 134110(2019).

    [30] N. N.Degtyarenko, K. S.Grishakov, E. A.Mazur. Electron, phonon, and superconducting properties of yttrium and sulfur hydrides under high pressures. J. Exp. Theor. Phys., 128, 105(2019).

    [31] Y.Gao, R.Sun, L.Wang, X.Liang, D.Yu, H.Liu, Y.Tian, Y.Zhang, X.-F.Zhou, C.Shao, Z.Zhao, A.Bergara, J.He, G.Gao, S.Zhao. First-principles study of crystal structures and superconductivity of ternary YSH6 and LaSH6 at high pressures. Phys. Rev. B, 100, 184502(2019).

    [32] M.Sakata, K.Shimizu, H.Saitoh, D.Meng, S.-i.Orimo, T.Sato, Y.Iijima, S.Takagi. Superconductivity of the hydrogen-rich metal hydride Li5MoH11 under high pressure. Phys. Rev. B, 99, 024508(2019).

    [33] L.Boeri, W.von der Linden, S.Di Cataldo. Phase diagram and superconductivity of calcium borohyrides at extreme pressures. Phys. Rev. B, 102, 014516(2020).

    [34] X.Guo, W.-C.Lu, H.-L.Chen, K. M.Ho, R.-L.Wang, C. Z.Wang. Stability and superconductivity of TiPHn (n = 1–8) under high pressure. Phys. Lett. A, 384, 126189(2020).

    [35] Y.Sun, H.Liu, Y.Xie, P.Huang, Y.Ma, C.Chen, X.Li. Chemically tuning stability and superconductivity of P–H compounds. J. Phys. Chem. Lett., 11, 935(2020).

    [36] T.Iitaka, X.Zhong, X.Li, B.Jiang, Y.Sun, Y.Xie, H.Li, Y.Tian. Computational discovery of a dynamically stable cubic SH3-like high-temperature superconductor at 100 GPa via CH4 intercalation. Phys. Rev. B, 101, 174102(2020).

    [37] X.Wang, T.Bi, E.Zurek, N.Geng, Y.Yan. A metastable CaSH3 phase composed of HS honeycomb sheets that is superconducting under pressure. J. Phys. Chem. Lett., 11, 9629(2020).

    [38] K. H.Lee, H.Hosono, J.Bang, Y.Ma, S. Y.Lee, S.-G.Kim, Y. H.Lee, J.-Y.Hwang, S. W.Kim, C. N.Nandadasa, K.Lee, J.Park, Y.Kim, Y.Zhang. Ferromagnetic quasi-atomic electrons in two-dimensional electride. Nat. Commun., 11, 1526(2020).

    [39] M. I.Eremets, A. P.Drozdov. High-temperature conventional superconductivity. Phys.-Usp., 59, 1154(2016).

    [40] Y.Yao, J. S.Tse. Superconducting hydrogen sulfide. Chem. - Eur. J., 24, 1769(2018).

    [41] E.Zurek, T.Bi. High-temperature superconductivity in alkaline and rare earth polyhydrides at high pressure: A theoretical perspective. J. Chem. Phys., 150, 050901(2019).

    [42] G. B.Bachelet, L.Boeri. Viewpoint: The road to room-temperature conventional superconductivity. J. Phys.: Condens. Matter, 31, 234002(2019).

    [43] Y.Yao, R. J.Hemley, Y.Ge, R. P.Dias, F.Zhang. Hole-doped room-temperature superconductivity in H3S1−xZx (Z = C, Si). Mater. Today Phys., 15, 100330(2020).

    [44] F.Tian, H.Yu, X.Huang, B.Liu, D.Li, D.Duan, Z.Zhao, T.Cui, W.Tian, Y.Liu. Pressure-induced metallization of dense (H2S)2H2 with high-Tc superconductivity. Sci. Rep., 4, 6968(2014).

    [45] I. A.Troyan, A. P.Drozdov, V.Ksenofontov, S. I.Shylin, M. I.Eremets. Conventional superconductivity at 203 kelvin at high pressures in the sulfur hydride system. Nature, 525, 73(2015).

    [46] Y.Ma, Q.Wu, Y.Sun, F.Peng, R. J.Needs, C. J.Pickard. Hydrogen clathrate structures in rare earth hydrides at high pressures: Possible route to room-temperature superconductivity. Phys. Rev. Lett., 119, 107001(2017).

    [47] D. A.Knyazev, M.Tkacz, F. F.Balakirev, V. B.Prakapenka, M. A.Kuzovnikov, S.Mozaffari, S. P.Besedin, V. S.Minkov, M. I.Eremets, A. P.Drozdov, P. P.Kong, D. E.Graf, L.Balicas, E.Greenberg. Superconductivity at 250 K in lanthanum hydride under high pressures. Nature, 569, 528(2019).

    [48] M.Ahart, Y.Meng, R. J.Hemley, A. K.Mishra, V. V.Struzhkin, M.Somayazulu, Z. M.Geballe, M.Baldini. Evidence for superconductivity above 260 K in lanthanum superhydride at megabar pressures. Phys. Rev. Lett., 122, 027001(2019).

    [49] I. I.Naumov, R.Hoffmann, H.Liu, N. W.Ashcroft, R. J.Hemley. Potential high-Tc superconducting lanthanum and yttrium hydrides at high pressure. Proc. Natl. Acad. Sci. U. S. A., 114, 6990(2017).

    [50] N.Meyers, R. P.Dias, N.Dasenbrock-Gammon, A.Salamat, K. V.Lawler, E.Zurek, R.McBride, X.Wang, E.Snider. Synthesis of yttrium superhydride superconductor with a transition temperature up to 262 K by catalytic hydrogenation at high pressures. Phys. Rev. Lett., 126, 117003(2021).

    [51] X.Huang, D. V.Semenok, D.Zhou, X.Li, B.Liu, D.Duan, A. R.Oganov, W.Chen, T.Cui, H.Xie. Superconducting praseodymium superhydrides. Sci. Adv., 6, eaax6849(2020).

    [52] Y.Ma, H.Liu, J.Lv, Y.Sun. Theory-orientated discovery of high-temperature superconductors in superhydrides stabilized under high pressure. Matter Radiat. Extremes, 5, 068101(2020).

    [53] A.Gavriliuk, I.Troyan, H.-k.Mao, C.Ji, B.Li, V.Prakapenka, E.Greenberg, X.-J.Chen, V.Struzhkin. Superconductivity in La and Y hydrides: Remaining questions to experiment and theory. Matter Radiat. Extremes, 5, 028201(2020).

    [54] N.Hansen, A. R.Oganov, C. W.Glass. USPEX—Evolutionary crystal structure prediction. Comput. Phys. Commun., 175, 713(2006).

    [55] A. R.Oganov, H. T.Stokes, A. O.Lyakhov, Q.Zhu. New developments in evolutionary structure prediction algorithm USPEX. Comput. Phys. Commun., 184, 1172(2013).

    [56] K.Tanaka, J. S.Tse, Y.Yao. Metastable high-pressure single-bonded phases of nitrogen predicted via genetic algorithm. Phys. Rev. B, 77, 052103(2008).

    [57] J.Lv, Y.Wang, Y.Ma, L.Zhu. Crystal structure prediction via particle-swarm optimization. Phys. Rev. B, 82, 094116(2010).

    [58] Y.Wang, J.Lv, Y.Ma, L.Zhu. CALYPSO: A method for crystal structure prediction. Comput. Phys. Commun., 183, 2063(2012).

    [59] E.Zurek, D. C.Lonie. XtalOpt: An open-source evolutionary algorithm for crystal structure prediction. Comput. Phys. Commun., 182, 372(2011).

    [60] K. J.Michel, C.Wolverton. Symmetry building Monte Carlo-based crystal structure prediction. Comput. Phys. Commun., 185, 1389(2014).

    [61] K.Xia, H.Gao, C.Liu, H.-T.Wang, D.Xing, J.Yuan, J.Sun. A novel superhard tungsten nitride predicted by machine-learning accelerated crystal structure search. Sci. Bull., 63, 817(2018).

    [62] F.Mauri, F.Belli, L.Monacelli, M.Calandra, J. A.Flores-Livas, R.Bianco, R.Arita, I.Errea, T.Koretsune, T.Tadano, A.Sanna. Quantum crystal structure in the 250-kelvin superconducting lanthanum hydride. Nature, 578, 66(2020).

    [63] F.Mauri, I.Errea, R. J.Needs, C. J.Pickard, Y.Li, H.Liu, Y.Zhang, M.Calandra, Y.Ma, J. R.Nelson. Quantum hydrogen-bond symmetrization in the superconducting hydrogen sulfide system. Nature, 532, 81(2016).

    [64] I. I.Mazin, M. J.Mehl, M. D.Johannes, N.Bernstein, C. S.Hellberg. What superconducts in sulfur hydrides under pressure and why. Phys. Rev. B, 91, 060511(2015).

    [65] C.Wang, J.Kim, J.-H.Cho, S.Yi, K. W.Kim, L.Liu. Microscopic mechanism of room-temperature superconductivity in compressed LaH10. Phys. Rev. B, 99, 140501(2019).

    [66] M.Einaga, K.Shimizu, T.Ishikawa, Y.Ohishi, M.Sakata, A. P.Drozdov, N.Hirao, M. I.Eremets, I. A.Troyan. Crystal structure of the superconducting phase of sulfur hydride. Nat. Phys., 12, 835(2016).

    [67] Y.Ge, F.Zhang, Y.Yao. First-principles demonstration of superconductivity at 280 K in hydrogen sulfide with low phosphorus substitution. Phys. Rev. B, 93, 224513(2016).

    [68] B. M.Klein, W. E.Pickett, M. J.Mehl, D. A.Papaconstantopoulos. Cubic H3S around 200 GPa: An atomic hydrogen superconductor stabilized by sulfur. Phys. Rev. B, 91, 184511(2015).

    [69] X.Huang, H.Yu, D.Li, D.Duan, F.Tian, Y.Liu, T.Cui, B.Liu, Y.Ma. Pressure-induced decomposition of solid hydrogen sulfide. Phys. Rev. B, 91, 180502(2015).

    [70] E. D.Bauer, N. N.Mel’nik, V. A.Sidorov, E. A.Ekimov, N. J.Curro, S. M.Stishov, J. D.Thompson. Superconductivity in diamond. Nature, 428, 542(2004).

    [71] W. E.Pickett, K.-W.Lee. Superconductivity in boron-doped diamond. Phys. Rev. Lett., 93, 237003(2004).

    [72] C.-W.Chu, K.Sasmal, B.Lv, A. M.Guloy, F.Chen, Y.-Y.Xue, B.Lorenz. Superconducting Fe-based compounds (A1−xSrx)Fe2As2 with A = K and Cs with transition temperatures up to 37 K. Phys. Rev. Lett., 101, 107007(2008).

    [73] R. J.McQueeney, E.Colombier, A.Kreyssig, R.Valentí, D. N.Argyriou, P. C.Canfield, Y.-Z.Zhang, J.Yan, T.Chatterji, A. I.Goldman, T. C.Hansen, H. O.Jeschke, S. A. J.Kimber, F.Yokaichiya. Similarities between structural distortions under pressure and chemical doping in superconducting BaFe2As2. Nat. Mater., 8, 471(2009).

    [74] H.Liu, G.Liu, M.Zhou, X.Yang, Y.Wang, Y.Ma, K.Wang, H.Wang, Y.Xie, L.Ma. Experimental observation of superconductivity at 215 K in calcium superhydride under high pressures(2021).

    [75] H.Wang, K.Tanaka, Y.Ma, J. S.Tse, T.Iitaka. Superconductive sodalite-like clathrate calcium hydride at high pressures. Proc. Natl. Acad. Sci. U. S. A., 109, 6463(2012).

    [76] H.Jeon, J.-H.Cho, S.Yi, C.Wang. Stability and bonding nature of clathrate H cages in a near-room-temperature superconductor LaH10. Phys. Rev. Mater., 5, 024801(2021).

    [77] S.Yi, J.-H.Cho, S.Liu, C.Wang. Underlying mechanism of charge transfer in Li-doped MgH16 at high pressure. Phys. Rev. B, 102, 184509(2020).

    [78] C.Wang, S.Yi, J.-H.Cho. Multiband nature of room-temperature superconductivity in LaH10 at high pressure. Phys. Rev. B, 101, 104506(2020).

    [79] E. J.Nicol, T.Timusk, S. F.Elatresh. Optical properties of superconducting pressurized LaH10. Phys. Rev. B, 102, 024501(2020).

    [80] P. H.Chang, M. J.Mehl, D. A.Papaconstantopoulos. High-temperature superconductivity in LaH10. Phys. Rev. B, 101, 060506(2020).

    [81] C.Wang, S.Yi, J.-H.Cho. Pressure dependence of the superconducting transition temperature of compressed LaH10. Phys. Rev. B, 100, 060502(2019).

    [82] M.Kostrzewa, R.Szcz??niak, K. M.Szcz??niak, A. P.Durajski. From LaH10 to room–temperature superconductors. Sci. Rep., 10, 1592(2020).

    [83] W.-J.Li, X.-J.Chen, H.-L.Tian, Y.-L.Hai, G.-H.Zhong, C.Zhang, X.-W.Yan, W.Yang, N.Lu, M.-J.Jiang. Cage structure and near room-temperature superconductivity in TbHn (n = 1–12). J. Phys. Chem. C, 125, 3640(2021).

    [84] R.Ahuja, W.Luo, U.Pinsook, P.Tsuppayakorn-aek, T.Bovornratanaraks. Superconductivity of superhydride CeH10 under high pressure. Mater. Res. Express, 7, 086001(2020).

    [85] J.Wu, D.Wang, W.-C.Lu, H.-L.Chen, H.Zhang, Q.-J.Zang. Theoretical study on UH4, UH8 and UH10 at high pressure. Phys. Lett. A, 383, 774(2019).

    [86] C.-l.Liu, X.-h.Wang, F.-w.Zheng, C.-w.Sun, F.-l.Tan, P.Zhang, Z.-w.Gu, J.-h.Zhao, J.Liu. Hydrogen clathrate structures in uranium hydrides at high pressures. ACS Omega, 6, 3946(2021).

    [87] A. G.Kvashnin, A. G.Ivanova, A. V.Sadakov, V. Y.Fominski, V.Svitlyk, D. V.Semenok, V. M.Pudalov, O. A.Sobolevskiy, I. A.Troyan, A. R.Oganov. Superconductivity at 161 K in thorium hydride ThH10: Synthesis and properties. Mater. Today, 33, 36(2020).

    [88] H.Wang, G.Gao, H.Liu, X.Feng, J.Zhang. Compressed sodalite-like MgH6 as a potential high-temperature superconductor. RSC Adv., 5, 59292(2015).

    [89] Y.Wang, J. S.Tse, Y.Ma, J.Hao, H.Liu, Y.Li. Pressure-stabilized superconductive yttrium hydrides. Sci. Rep., 5, 9948(2015).

    [90] R.Hoffmann, E.Zurek, X.Ye, N. W.Ashcroft, N.Zarifi. High hydrides of scandium under pressure: Potential superconductors. J. Phys. Chem. C, 122, 6298(2018).

    [91] R.Akashi, D. V.Semenok, A. V.Sadakov, A.Bergara, M.Calandra, A. G.Ivanova, E.Greenberg, I. S.Lyubutin, R.Bianco, L.Monacelli, I.Errea, V. M.Pudalov, F.Mauri, V. B.Prakapenka, I. A.Troyan, A. R.Oganov, O. A.Sobolevskiy, A. G.Gavriliuk, A. G.Kvashnin, V. V.Struzhkin. Anomalous high-temperature superconductivity in YH6. Adv. Mater., 33, 2006832(2021).

    [92] T.Cui, H.Song, D.Li, D.Duan, Z.Shao, X.Xiao, H.Xie, F.Tian, Y.Wang, B.Liu. High-temperature superconductivity in ternary clathrate YCaH12 under high pressures. J. Phys.: Condens. Matter, 31, 245404(2019).

    [93] X.-F.Zhou, L.Wang, A.Bergara, B.Wen, Z.Zhao, G.Gao, X.Liang, J.He, Y.Tian. Potential high-Tc superconductivity in CaYH12 under pressure. Phys. Rev. B, 99, 100505(2019).

    [94] I. A.Kruglov, A. G.Kvashnin, D. V.Semenok, A. R.Oganov. Actinium hydrides AcH10, AcH12, and AcH16 as high-temperature conventional superconductors. J. Phys. Chem. Lett., 9, 1920(2018).

    [95] H.Liu, K.Tanaka, J. S.Tse. Electron-phonon coupling mechanisms for hydrogen-rich metals at high pressure. Phys. Rev. B, 96, 100502(2017).

    [96] D.Duan, H.Xie, Y.Yao, V. Z.Kresin, S. A. T.Redfern, H.Song, X.Feng, S.Jiang, Z.Zhang, T.Cui, C. J.Pickard. Hydrogen pentagraphenelike structure stabilized by hafnium: A high-temperature conventional superconductor. Phys. Rev. Lett., 125, 217001(2020).

    Xiaohua Zhang, Yaping Zhao, Fei Li, Guochun Yang. Pressure-induced hydride superconductors above 200 K[J]. Matter and Radiation at Extremes, 2021, 6(6): 068201
    Download Citation