• Laser & Optoelectronics Progress
  • Vol. 56, Issue 1, 010004 (2019)
Jiawen Luo, Xuemin Wang*, Changle Shen, Tao Jiang, Zhiqiang Zhan, Ruijiao Zou, Liping Peng, Weihua Li, and Weidong Wu
Author Affiliations
  • Science and Technology on Plasma Physics Laboratory, Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang, Sichuan 621999, China
  • show less
    DOI: 10.3788/LOP56.010004 Cite this Article Set citation alerts
    Jiawen Luo, Xuemin Wang, Changle Shen, Tao Jiang, Zhiqiang Zhan, Ruijiao Zou, Liping Peng, Weihua Li, Weidong Wu. Research Progress on Array Coupling of Terahertz Quantum Cascade Lasers[J]. Laser & Optoelectronics Progress, 2019, 56(1): 010004 Copy Citation Text show less
    References

    [1] Ferguson B, Zhang X C. Materials for terahertz science and technology[J]. Nature Materials, 1, 26-33(2002). http://europepmc.org/abstract/MED/12618844

    [2] Siegel P H. Terahertz technology[J]. IEEE Transactions on Microwave Theory and Techniques, 50, 910-928(2002).

    [3] Yao J Q. Introduction of THz-wave and its applications[J]. Journal of Chongqing University of Posts and Telecommunications(Natural Science Edition), 22, 703-707(2010).

    [4] Yang M W, Ji H B, Tan Z Y et al. Terahertz joint analyzer with imaging and spectrum detection[J]. Acta Optica Sinica, 36, 0611004(2016).

    [5] Li M Q, Tan Z Y, Qiu F C et al. Fast reflective scanning imaging based on terahertz quantum-cascade laser[J]. Acta Optica Sinica, 37, 0611004(2017).

    [6] Liu Y, Zhao G Z, Shen Y C. Polarization imaging detection based on the continuous terahertz wave[J]. Chinese Journal of Lasers, 43, 0111001(2016).

    [7] Faist J, Capasso F, Sivco D L et al. Quantum cascade laser[J]. Science, 264, 553-556(1994).

    [8] Kohler R, Tredicucci A, Beltram F et al. Terahertz semiconductor-heterostructure laser[J]. Nature, 417, 156-159(2002).

    [9] Scalari G, Ajili L, Faist J. Far-infrared (λ≃87 μm) bound-to-continuum quantum-cascade lasers operating up to 90 K[J]. Applied Physics Letters, 82, 3165-3167(2003). http://scitation.aip.org/content/aip/journal/apl/82/19/10.1063/1.1571653

    [10] Liu H C, Wächter M, Ban D et al. Effect of doping concentration on the performance of terahertz quantum-cascade lasers[J]. Applied Physics Letters, 87, 141102(2005). http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4816807

    [11] Degl'Innocenti R, Shah Y D, Jessop D S et al. . Hollow metallic waveguides integrated with terahertz quantum cascade lasers[J]. Optics Express, 22, 24439-24449(2014). http://www.ncbi.nlm.nih.gov/pubmed/25322020

    [12] Han Y J, Li L H, Zhu J et al. Silver-based surface plasmon waveguide for terahertz quantum cascade lasers[J]. Optics Express, 26, 3814-3827(2018). http://www.ncbi.nlm.nih.gov/pubmed/29475360

    [13] Zhu H, Zhu H Q, Wang F F et al. Terahertz master-oscillator power-amplifier quantum cascade laser with a grating coupler of extremely low reflectivity[J]. Optics Express, 26, 1942-1953(2018). http://www.onacademic.com/detail/journal_1000040493578310_c610.html

    [14] Belkin M A, Capasso F. New frontiers in quantum cascade lasers: high performance room temperature terahertz sources[J]. Physica Scripta, 90, 118002(2015). http://adsabs.harvard.edu/abs/2015PhyS...90k8002B

    [15] Wienold M, Roben B, Schrottke L et al. High-temperature, continuous-wave operation of terahertz quantum-cascade lasers with metal-metal waveguides and third-order distributed feedback[J]. Optics Express, 22, 3334-3348(2014). http://www.ncbi.nlm.nih.gov/pubmed/24663624

    [16] Wang X M, Shen C L, Jiang T et al. High-power terahertz quantum cascade lasers with~0.23 W in continuous wave mode[J]. AIP Advances, 6, 075210(2016). http://scitation.aip.org/content/aip/journal/adva/6/7/10.1063/1.4959195

    [17] Fathololoumi S, Dupont E. Chan C W I, et al. Terahertz quantum cascade lasers operating up to~200 K with optimized oscillator strength and improved injection tunneling[J]. Optics Express, 20, 3866-3876(2012). http://new.med.wanfangdata.com.cn/Paper/Detail?id=PeriodicalPaper_PM22418143

    [18] Li L H, Chen L, Zhu J X et al. Terahertz quantum cascade lasers with >1 W output powers[J]. Electronics Letters, 50, 309-311(2014).

    [19] Li L H, Zhu J X, Chen L et al. The MBE growth and optimization of high performance terahertz frequency quantum cascade lasers[J]. Optics Express, 23, 2720-2729(2015). http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-23-3-2720

    [20] Sun J N, Sun W J, Zhao L P et al. Study of the factors influencing the properties of AlGaN/GaN quantum cascade lasers[J]. Acta Optica Sinica, 32, 0214002(2012).

    [21] Lee H K, Chung K S, Yu J S et al. Thermal analysis of buried heterostructure quantum cascade lasers for long-wavelength infrared emission using 2D anisotropic heat-dissipation model[J]. Physica Status Solidi (a), 206, 356-362(2009). http://onlinelibrary.wiley.com/doi/10.1002/pssa.200824314/citedby

    [22] Lee H K, Yu J S. Thermal analysis of short wavelength InGaAs/InAlAs quantum cascade lasers[J]. Solid-State Electronics, 54, 769-776(2010). http://www.sciencedirect.com/science?_ob=ArticleURL&md5=7024402aacf38e61711fe409b9980376&_udi=B6TY5-4YWBBRJ-1&_user=10&_coverDate=08%2F31%2F2010&_rdoc=6&_fmt=high&_orig=browse&_origin=browse&_zone=rslt_list_item&_srch=doc-info(%23toc%235609%232010%2399945

    [23] Lee H K, Chung K S, Yu J S. Thermal analysis of InP-based quantum cascade lasers for efficient heat dissipation[J]. Applied Physics B, 93, 779-786(2008). http://link.springer.com/article/10.1007/s00340-008-3265-2

    [24] Chaparala S C, Xie F, Caneau C et al. Design guidelines for efficient thermal management of mid-infrared quantum cascade lasers[J]. IEEE Transactions on Components, Packaging and Manufacturing Technology, 1, 1975-1982(2011). http://ieeexplore.ieee.org/document/6119135/

    [25] Pierscinski K, Pierscinska D. Iwi ska M, et al. Investigation of thermal properties of mid-infrared AlGaAs/GaAs quantum cascade lasers [J]. Journal of Applied Physics, 112, 043112(2012). http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6294384

    [26] Krall M, Bachmann D, Deutsch C et al. All-electrical thermal monitoring of terahertz quantum cascade lasers[J]. IEEE Photonics Technology Letters, 26, 1470-1473(2014). http://www.onacademic.com/detail/journal_1000037294241510_26f7.html

    [27] Bowden B, Harrington J A, Mitrofanov O. Low-loss modes in hollow metallic terahertz waveguides with dielectric coatings[J]. Applied Physics Letters, 93, 181104(2008). http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4835303

    [28] Vitiello M S, Xu J H, Kumar M et al. High efficiency coupling of terahertz micro-ring quantum cascade lasers to the low-loss optical modes of hollow metallic waveguides[J]. Optics Express, 19, 1122-1130(2011). http://europepmc.org/abstract/med/21263652

    [29] Vitiello M S, Xu J H, Beltram F et al. Guiding a terahertz quantum cascade laser into a flexible silver-coated waveguide[J]. Journal of Applied Physics, 110, 063112(2011). http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6031640

    [30] Navarro-Cia M, Vitiello M S, Bledt C M et al. Terahertz wave transmission in flexible polystyrene-lined hollow metallic waveguides for the 2.5~5 THz band[J]. Optics Express, 21, 23748-23755(2013). http://www.ncbi.nlm.nih.gov/pubmed/24104287

    [31] Wallis R. Degl'Innocenti R, Jessop D S, et al. Efficient coupling of double-metal terahertz quantum cascade lasers to flexible dielectric-lined hollow metallic waveguides[J]. Optics Express, 23, 26276-26287(2015).

    [32] Danylov A A, Waldman J, Goyette T M et al. Transformation of the multimode terahertz quantum cascade laser beam into a Gaussian, using a hollow dielectric waveguide[J]. Applied Optics, 46, 5051-5055(2007). http://europepmc.org/abstract/MED/17676114

    [33] Patimisco P, Spagnolo V, Vitiello M S et al. Coupling external cavity mid-IR quantum cascade lasers with low loss hollow metallic/dielectric waveguides[J]. Applied Physics B, 108, 255-260(2012). http://link.springer.com/article/10.1007/s00340-012-4891-2

    [34] Sampaolo A, Patimisco P, Kriesel J M et al. Single mode operation with mid-IR hollow fibers in the range 5.1~10.5 μm[J]. Optics Express, 23, 195-204(2015). http://europepmc.org/abstract/MED/25835666

    [35] Patimisco P, Sampaolo A, Giglio M et al. Hollow core waveguide as mid-infrared laser modal beam filter[J]. Journal of Applied Physics, 118, 113102(2015). http://scitation.aip.org/content/aip/journal/jap/118/11/10.1063/1.4930893

    [36] Kirch J D, Chang C C, Boyle C et al. 5.5 W near-diffraction-limited power from resonant leaky-wave coupled phase-locked arrays of quantum cascade lasers[J]. Applied Physics Letters, 106, 061113(2015). http://scitation.aip.org/content/aip/journal/apl/106/6/10.1063/1.4908178

    [37] Lyakh A, Maulini R, Tsekoun A et al. Continuous wave operation of buried heterostructure 4.6 μm quantum cascade laser Y-junctions and tree arrays[J]. Optics Express, 22, 1203-1208(2014). http://www.opticsinfobase.org/abstract.cfm?uri=oe-22-1-1203

    [38] Wang L, Zhang J C, Jia Z W et al. Phase-locked array of quantum cascade lasers with an integrated Talbot cavity[J]. Optics Express, 24, 30275-30281(2016). http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-24-26-30275

    [39] de Naurois G M, Carras M, Simozrag B et al. . Coherent quantum cascade laser micro-stripe arrays[J]. AIP Advances, 1, 032165(2011). http://scitation.aip.org/content/aip/journal/adva/1/3/10.1063/1.3643690

    [40] Botez D, Peterson G. Modes of phase-locked diode-laser arrays of closely spaced antiguides[J]. Electronics Letters, 24, 1042-1044(1988). http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=ELLEAK000024000016001042000001&idtype=cvips&gifs=Yes

    [41] Chen K L, Wang S. Single-lobe symmetric coupled laser arrays[J]. Electronics Letters, 21, 347-349(1985). http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4251100

    [42] Katz J, Margalit S, Yariv A. Diffraction coupled phase-locked semiconductor laser array[J]. Applied Physics Letters, 42, 554-556(1983). http://www.opticsinfobase.org/abstract.cfm?uri=CLEO-1983-TUC1

    [43] Ackley D E. Single longitudinal mode operation of high power multiple-stripe injection lasers[J]. Applied Physics Letters, 42, 152-154(1983). http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=4851645

    [44] Kao T Y, Hu Q, Reno J L. Phase-locked arrays of surface-emitting terahertz quantum-cascade lasers[J]. Applied Physics Letters, 96, 101106(2010). http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?reload=true&arnumber=5429947

    [45] Kao T Y, Hu Q, Reno J L. Perfectly phase-matched third-order distributed feedback terahertz quantum-cascade lasers[J]. Optics Letters, 37, 2070-2072(2012). http://www.opticsinfobase.org/abstract.cfm?URI=ol-37-11-2070

    [46] Bosco L, Bonzon C, Ohtani K et al. A patch-array antenna single-mode low electrical dissipation continuous wave terahertz quantum cascade laser[J]. Applied Physics Letters, 109, 201103(2016). http://scitation.aip.org/content/aip/journal/apl/109/20/10.1063/1.4967836

    [47] De Freez R K, Bossert D J, Yu N et al. . Spectral and picosecond temporal properties of flared guide Y-coupled phase-locked laser arrays[J]. Applied Physics Letters, 53, 2380-2382(1988). http://scitation.aip.org/content/aip/journal/apl/53/24/10.1063/1.100236

    [48] Ho N, Phillips M C, Qiao H et al. Single-mode low-loss chalcogenide glass waveguides for the mid-infrared[J]. Optics Letters, 31, 1860-1862(2006). http://europepmc.org/abstract/med/16729095

    [49] Tsay C, Toor F, Gmachl C F et al. Chalcogenide glass waveguides integrated with quantum cascade lasers for on-chip mid-IR photonic circuits[J]. Optics Letters, 35, 3324-3326(2010). http://www.ncbi.nlm.nih.gov/pubmed/20967054

    [50] Tsay C, Mujagic E, Madsen C K et al. Mid-infrared characterization of solution-processed As2S3 chalcogenide glass waveguides[J]. Optics Express, 18, 15523-15530(2010). http://www.ncbi.nlm.nih.gov/pubmed/20720932

    [51] Chen H T, Lu H, Azad A K et al. Electronic control of extraordinary terahertz transmission through subwavelength metal hole arrays[J]. Optics Express, 16, 7641-7648(2008). http://www.opticsinfobase.org/abstract.cfm?URI=oe-16-11-7641

    [52] Miyamaru F, Hangyo M. Finite size effect of transmission property for metal hole arrays in subterahertz region[J]. Applied Physics Letters, 84, 2742-2744(2004). http://scitation.aip.org/content/aip/journal/apl/84/15/10.1063/1.1702125

    [53] Gerhard M, Theuer M, Beigang R. Coupling into tapered metal parallel plate waveguides using a focused terahertz beam[J]. Applied Physics Letters, 101, 041109(2012). http://ieeexplore.ieee.org/xpl/abstractReferences.jsp?arnumber=6248436

    [54] Kim S H, Lee E S, Ji Y B et al. Improvement of THz coupling using a tapered parallel-plate waveguide[J]. Optics Express, 18, 1289-1295(2010). http://www.opticsinfobase.org/abstract.cfm?URI=oe-18-2-1289

    [55] Iwaszczuk K, Andryieuski A, Lavrinenko A et al. Terahertz field enhancement to the MV/cm regime in a tapered parallel plate waveguide[J]. Optics Express, 20, 8344-8355(2012). http://europepmc.org/abstract/med/22513546

    Jiawen Luo, Xuemin Wang, Changle Shen, Tao Jiang, Zhiqiang Zhan, Ruijiao Zou, Liping Peng, Weihua Li, Weidong Wu. Research Progress on Array Coupling of Terahertz Quantum Cascade Lasers[J]. Laser & Optoelectronics Progress, 2019, 56(1): 010004
    Download Citation