• Laser & Optoelectronics Progress
  • Vol. 55, Issue 7, 71406 (2018)
Wang Yadong1, Yang Lingzhen1、2、*, Yang Yongqiang1, Wang Juanfen1, Zhang Zhaoxia1, and Xue Pingping1
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    DOI: 10.3788/lop55.071406 Cite this Article Set citation alerts
    Wang Yadong, Yang Lingzhen, Yang Yongqiang, Wang Juanfen, Zhang Zhaoxia, Xue Pingping. Temporal Point Spread Functions Measurement Based on Correlation of Chaotic Laser[J]. Laser & Optoelectronics Progress, 2018, 55(7): 71406 Copy Citation Text show less
    References

    [1] Chance B. Near-infrared (NIR) optical spectroscopy characterizes breast tissue hormonal and age status[J]. Academic Radiology, 2001, 8(3): 209-210.

    [2] Tromberg B J, Shah N, Lanning R, et al. Non-invasive in vivo characterization of breast tumors using photon migration spectroscopy[J]. Neoplasia, 2000, 2(1/2): 26-40.

    [3] Hebden J C, Gibson A, Yusof R M, et al. Three-dimensional optical tomography of the premature infant brain[J]. Physics in Medicine and Biology, 2002, 47(23): 4155-4166.

    [4] Aldrich C J, D′Antona D, Spencer J A, et al. The effect of maternal pushing on fetal cerebral oxygenation and blood volume during the second stage of labour[J]. British Journal of Obstetrics and Gynaecology, 1995, 102(6): 448-453.

    [5] Boas D A, Gaudette T, Strangman G, et al. The accuracy of near infrared spectroscopy and imaging during focal changes in cerebral hemodynamics[J]. NeuroImage, 2001, 13(1): 76-90.

    [6] Chance B, Zhuang Z, UnAh C, et al. Cognition-activated low-frequency modulation of light absorption in human brain[J]. Proceedings of the National Academy of Sciences of the United States of America, 1993, 90(8): 3770-3774.

    [7] Beuthan J, Netz U, Minet O, et al. Light scattering study of rheumatoid arthritis[J]. Quantum Electronics, 2002, 32(11): 945-952.

    [8] Edwards A D, Richardson C,Cope M, et al. Cotside measurement of cerebral blood flow in ill newborn infants by near infrared spectroscopy[J]. The Lancet, 1988, 332(8614): 770-771.

    [9] Wyatt J S, Cope M, Delpy D T, et al. Quantitation of cerebral blood volume in human infants by near infrared spectroscopy[J]. Journal of Applied Physiology, 1990, 68(3): 1086-1091.

    [10] Larusson F, Fantini S, Miller E L. Parametric level set reconstruction methods for hyperspectral diffuse optical tomography[J]. Biomedical Optics Express, 2012, 3(5): 1006-1024.

    [11] de Grauw C J, Gerritsen H C. Multiple time-gate module for fluorescence lifetime imaging[J]. Applied Spectroscopy, 2001, 55(6): 670-678.

    [12] Gao F, Zhang L M, He H Y, et al. A self-normalized full time-resolved scheme for fluorescence diffuse optical tomography[J]. Proceeding of SPIE, 2008, 6850: 68500N.

    [13] Siegel A M, Marota J J A, Boas D A. Design and evaluation of a continuous-wave diffuse optical tomography system[J]. Optics Express, 1999, 4(8): 287-298.

    [14] Chen N G, Zhu Q. Time-resolved diffusive optical imaging using pseudo-random bit sequences[J]. Optics Express, 2003, 11(25): 3445-3454.

    [15] Wu X G, Yang Y, Hao P Y. Unambiguous laser ranging technology based on extended Pseudo-Random modulation[J]. Chinese Journal of Lasers, 2016, 43(4): 0408001.

    [16] Sun Z C, Wang Z, Wu C Q, et al. All-optical repetition rate multiplication of return to zero pseudorandom bit sequences using duty ratio compressor based on terahertz optical asymmetrical demultiplexer[J]. Chinese Journal of Lasers, 2016, 43(4): 0405001.

    [17] Wang Y S, Wang Y C, Guo Y Q. Research progress of the photonic integrated chaotic lasers[J]. Laser & Optoelectronics Progress, 2017, 54(10): 100005.

    [18] Qiao Y, Ma J, Zhang J G. Design of chaotic light source for chaos optical time domain reflectometry[J]. Laser & Optoelectronics Progress, 2017, 54(2): 021201.

    [19] Chen N G, Zhu Q. Time-resolved optical measurements with spread spectrum excitation[J]. Optics Letters, 2002, 27(20): 1806-1808.

    [20] Rumbaugh L K, Banavar M K, Jemison W D. Underwater optical impulse response measurement using a chaotic lidar sensor[J]. Proceeding of SPIE, 2015, 9459: 945909.

    [21] Essenpreis M, Elwell C E, Cope M, et al. Spectral dependence of temporal point spread functions in human tissues[J]. Applied Optics, 1993, 32(4): 418-425.

    Wang Yadong, Yang Lingzhen, Yang Yongqiang, Wang Juanfen, Zhang Zhaoxia, Xue Pingping. Temporal Point Spread Functions Measurement Based on Correlation of Chaotic Laser[J]. Laser & Optoelectronics Progress, 2018, 55(7): 71406
    Download Citation