• Chinese Optics Letters
  • Vol. 19, Issue 6, 060003 (2021)
Mengyue Xu, Mingbo He, Yuntao Zhu, Lin Liu, Lifeng Chen*, Siyuan Yu**, and Xinlun Cai***
Author Affiliations
  • State Key Laboratory of Optoelectronic Materials and Technologies and School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510000, China
  • show less
    DOI: 10.3788/COL202119.060003 Cite this Article Set citation alerts
    Mengyue Xu, Mingbo He, Yuntao Zhu, Lin Liu, Lifeng Chen, Siyuan Yu, Xinlun Cai. Integrated thin film lithium niobate Fabry–Perot modulator [Invited][J]. Chinese Optics Letters, 2021, 19(6): 060003 Copy Citation Text show less
    References

    [1] R. S. Weis, T. K. Gaylord. Lithium niobate: summary of physical properties and crystal structure. Appl. Phys. A, 37, 191(1985).

    [2] A. Honardoost, K. Abdelsalam, S. Fathpour. Rejuvenating a versatile photonic material: thin-film lithium niobate. Laser Photon. Rev., 14, 2000088(2020).

    [3] C. Wang, M. Zhang, X. Chen, M. Bertrand, A. Shams-Ansari, S. Chandrasekhar, P. Winzer, M. Lončar. Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages. Nature, 562, 101(2018).

    [4] V. E. Stenger, J. Toney, A. PoNick, D. Brown, B. Griffin, R. Nelson, S. Sriram. Low loss and low Vpi thin film lithium niobate on quartz electro-optic modulators. 2017 European Conference on Optical Communication (ECOC), 1(2017).

    [5] M. He, M. Xu, Y. Ren, J. Jian, Z. Ruan, Y. Xu, S. Gao, S. Sun, X. Wen, L. Zhou, L. Liu, C. Guo, H. Chen, S. Yu, L. Liu, X. Cai. High-performance hybrid silicon and lithium niobate Mach–Zehnder modulators for 100 Gbit s−1 and beyond. Nat. Photon., 13, 359(2019).

    [6] X. Wang, P. O. Weigel, J. Zhao, M. Ruesing, S. Mookherjea. Achieving beyond-100-GHz large-signal modulation bandwidth in hybrid silicon photonics Mach Zehnder modulators using thin film lithium niobate. APL Photon., 4, 096101(2019).

    [7] S. Sun, M. He, M. Xu, X. Zhang, Z. Ruan, L. Zhou, L. Liu, L. Liu, S. Yu, X. Cai. High-speed modulator with integrated termination resistor based on hybrid silicon and lithium niobate platform. J. Lightwave Technol., 39, 1108(2020).

    [8] M. Xu, M. He, H. Zhang, J. Jian, Y. Pan, X. Liu, L. Chen, X. Meng, H. Chen, Z. Li, X. Xiao, S. Yu, S. Yu, X. Cai. High-performance coherent optical modulators based on thin-film lithium niobate platform. Nat. Commun., 11, 3911(2020).

    [9] L. Chen, Q. Xu, M. G. Wood, R. M. Reano. Hybrid silicon and lithium niobate electro-optical ring modulator. Optica, 1, 112(2014).

    [10] A. Guarino, G. Poberaj, D. Rezzonico, R. Degl’Innocenti, P. Günter. Electro-optically tunable microring resonators in lithium niobate. Nat. Photon., 1, 407(2007).

    [11] A. Rao, A. Patil, J. Chiles, M. Malinowski, S. Novak, K. Richardson, P. Rabiei, S. Fathpour. Heterogeneous microring and Mach–Zehnder modulators based on lithium niobate and chalcogenide glasses on silicon. Opt. Express, 23, 22746(2015).

    [12] C. Wang, M. Zhang, B. Stern, M. Lipson, M. Loncar. Nanophotonic lithium niobate electro-optic modulators. Opt. Express, 26, 1547(2018).

    [13] A. N. R. Ahmed, S. Shi, A. J. Mercante, D. W. Prather. High-performance racetrack resonator in silicon nitride–thin film lithium niobate hybrid platform. Opt. Express, 27, 30741(2019).

    [14] M. R. Escalé, D. Pohl, A. Sergeyev, R. Grange. Extreme electro-optic tuning of Bragg mirrors integrated in lithium niobate nanowaveguides. Opt. Lett., 43, 1515(2018).

    [15] M. R. Escalé, D. Pohl, W. Heni, B. Baeuerle, A. Josten, A. Sergeyev, J. Leuthold, R. Grange. Integrated electro-optic Bragg modulators in lithium niobate nanowaveguides. Advanced Photonics 2018, IW4I.4(2018).

    [16] J. Wang, P. Chen, D. Dai, L. Liu. Polarization coupling of X-cut thin film lithium niobate based waveguides. IEEE Photon. J., 12, 2200310(2020).

    [17] J. Jian, P. Xu, H. Chen, M. He, Z. Wu, L. Zhou, L. Liu, C. Yang, S. Yu. High-efficiency hybrid amorphous silicon grating couplers for sub-micron-sized lithium niobate waveguides. Opt. Express, 26, 29651(2018).

    [18] X. Xiao, X. Y. Li, H. Xu, Y. T. Hu, K. Xiong, Z. Y. Li, T. Chu, J. Z. Yu, Y. D. Yu. 44-Gb/s silicon microring modulators based on zigzag PN junctions. IEEE Photon. Technol. Lett., 24, 1712(2012).

    [19] G. Li, A. V. Krishnamoorthy, I. Shubin, J. Yao, Y. Luo, H. Thacker, X. Zheng, K. Raj, J. E. Cunningham. Ring resonator modulators in silicon for interchip photonic links. IEEE J. Sel. Top. Quantum Electron., 19, 3401819(2013).

    [20] T. Baba, S. Akiyama, M. Imai, N. Hirayama, H. Takahashi, Y. Noguchi, T. Horikawa, T. Usuki. 50-Gb/s ring-resonator-based silicon modulator. Opt. Express, 21, 11869(2013).

    [21] Y. Tong, Z. Hu, X. Wu, S. Liu, L. Chang, A. Netherton, C. Chan, J. E. Bowers, H. K. Tsang. An experimental demonstration of 160-Gbit/s PAM-4 using a silicon micro-ring modulator. IEEE Photon. Technol. Lett., 32, 125(2019).

    [22] M. Li, J. Ling, Y. He, U. A. Javid, S. Xue, Q. Lin. Lithium niobate photonic-crystal electro-optic modulator. Nat. Commun., 11, 4123(2020).

    [23] J. Muller, F. Merget, S. S. Azadeh, J. Hauck, S. R. Garcia, B. Shen, J. Witzens. Optical peaking enhancement in high-speed ring modulators. Sci. Rep., 4, 6310(2014).

    [24] H. Yu, D. Q. Ying, M. Pantouvaki, J. Van Campenhout, P. Absil, Y. L. Hao, J. Y. Yang, X. Q. Jiang. Trade-off between optical modulation amplitude and modulation bandwidth of silicon micro-ring modulators. Opt. Express, 22, 15178(2014).

    [25] M. Bahadori, Y. Yang, A. E. Hassanien, L. L. Goddard, S. Gong. Theory of coupled harmonics and its application to resonant and non-resonant electro-optic modulators. J. Lightwave Technol., 38, 5756(2020).

    [26] J. P. Salvestrini, L. Guilbert, M. Fontana, M. Abarkan, S. Gille. Analysis and control of the DC drift in LiNbO3-based Mach–Zehnder modulators. J. Lightwave Technol., 29, 1522(2011).

    [27] S. Sun, M. He, M. Xu, S. Gao, Z. Chen, X. Zhang, Z. Ruan, X. Wu, L. Zhou, L. Liu, C. Lu, C. Guo, L. Liu, S. Yu, X. Cai. Bias-drift-free Mach–Zehnder modulators based on a heterogeneous silicon and lithium niobate platform. Photon. Res., 8, 1958(2020).

    CLP Journals

    [1] Xuerui Sun, Yinan Wu, Chuanyi Lu, Yuting Zhang, Hao Li, Shijie Liu, Yuanlin Zheng, Xianfeng Chen. Experimental investigation on the unbalanced Mach–Zehnder interferometer on lithium niobate thin film[J]. Chinese Optics Letters, 2022, 20(10): 101301

    [2] Chunyan Jin, Wei Wu, Lei Cao, Bofeng Gao, Jiaxin Chen, Wei Cai, Mengxin Ren, Jingjun Xu. Fabrication of lithium niobate metasurfaces via a combination of FIB and ICP-RIE[J]. Chinese Optics Letters, 2022, 20(11): 113602

    [3] Fan Yang, Xiansong Fang, Xinyu Chen, Lixin Zhu, Fan Zhang, Zhangyuan Chen, Yanping Li. Monolithic thin film lithium niobate electro-optic modulator with over 110 GHz bandwidth[J]. Chinese Optics Letters, 2022, 20(2): 022502

    Data from CrossRef

    [1] Alessandro Prencipe, Mohammad Amin Baghban, Katia Gallo. Tunable Ultranarrowband Grating Filters in Thin-Film Lithium Niobate. ACS Photonics, acsphotonics.1c00383(2021).

    Mengyue Xu, Mingbo He, Yuntao Zhu, Lin Liu, Lifeng Chen, Siyuan Yu, Xinlun Cai. Integrated thin film lithium niobate Fabry–Perot modulator [Invited][J]. Chinese Optics Letters, 2021, 19(6): 060003
    Download Citation