
- Chinese Optics Letters
- Vol. 19, Issue 6, 060003 (2021)
Abstract
1. Introduction
Lithium niobate (
Lumped-element resonant modulators offer smaller device sizes and lower power consumption than traveling-wave MZMs. Various types of resonant LN modulators have been explored, such as micro-ring resonators with circular[
In this work, we demonstrate an integrated LNOI FP resonator modulator. The on-chip FP cavity is formed by a pair of DBRs as end mirrors and an etched LN waveguide with lumped electrodes between the DBRs. We optimize the design of the DBRs and FP cavity to achieve a low insertion loss (
Sign up for Chinese Optics Letters TOC. Get the latest issue of Chinese Optics Letters delivered right to you!Sign up now
2. Design and Fabrication
Figure 1(a) shows the schematic of the integrated modulator based on the FP resonator. The two DBRs act as mirrors to reflect the light within a particular wavelength range. An EO phase modulator with length
Figure 1.(a) Schematic of the resonant modulator based on LNOI. (b) Simulated optical TE0 mode profile and electric field distribution. (c) Refractive index change distribution in LN. The applied voltage is 10 V. (d) Scanning electron microscope (SEM) image of the DBR. (e) SEM image of the modulation region.
Our devices are fabricated on an X-cut LNOI wafer from NANOLN, where a 600 nm thick LN film is bonded on 2.5 µm silicon dioxide. We first define the LN DBR and waveguide patterns using electron-beam lithography (EBL). Next, the ridge waveguides with 300 nm slab thickness are formed by an inductively coupled plasma dry-etching process. Then, we deposit an amorphous-Si (a-Si) layer and define and fabricate a grating coupler in the a-Si layer to ensure efficient fiber-chip coupling and transverse-electric (TE) optical mode operation[
We choose the waveguide width in the FP cavity of 1 µm to ensure single-mode operation. In the modulation region, the LN waveguide lays in the gap between the ground and signal (GS) electrodes. As shown in Fig. 1(b), the in-plane electric fields (
Figure 2.Variation of the LN waveguide effective refractive index (1 V voltage applied) and absorption loss as a function of the electrode gap.
To optimize the FP modulator for optical interconnects, the design aims for the following.
Sign up for Chinese Optics Letters TOC. Get the latest issue of Chinese Optics Letters delivered right to you!Sign up now
We start the design by choosing a corrugation depth
Figure 3.(a) 1 dB bandwidth of stopband versus corrugation depth Δw. (b) Maximum extinction ratio (ER) and quality (Q) factor versus number of grating periods N. (c) Transmission spectra of the FP modulator with different FP cavity length Lc.
3. Measurement Results
We measure the normalized transmission spectrum of the FP resonator using a tunable laser (Agilent TLS 81600). The output power of the tunable laser and the wavelength step size are set to 0 dBm and 3 pm, respectively. The measured transmission spectra in Fig. 3 are normalized to the fiber coupling loss. Figure 4(a) indicates that the on-chip insertion loss is less than 1.65 dB across the whole C band. Over the wavelength span of 16 nm, the measured ER is greater than 9 dB. The maximum loaded Q factor of
Figure 4.(a) Measured transmission spectrum of the FP cavity. Inset: the resonance peak at the Bragg wavelength. (b) Measurement and linear fitting of the resonant wavelength shift as a function of the applied DC voltage. Inset: the spectral shift as the voltage sweeps from 0 V to 25 V at different wavelengths.
To characterize the static EO property of the device, we sweep the DC voltage from 0 V to 25 V while monitoring the shift of resonant wavelengths [Fig. 4(b)]. The resonant wavelength shifts by
To investigate the small-signal response for various optical detuning (
Figure 5.Measured EO S21 responses at different operation wavelengths. Δλ represents the wavelength offset from the resonance wavelength.
We verify the high-speed modulation performance with NRZ modulation with the setup shown in Fig. 6(a). A tunable wavelength laser with an optical power of 10 dBm is launched into the modulator. We generate the pseudo-random bit sequences (PRBS) with lengths of
Figure 6.(a) Experimental setup for measuring the eye diagram. PC, polarization controller; DUT, device under test; EDFA, erbium-doped fiber amplifier; PRBS, pseudo-random binary sequences. (b) Open eye diagrams with data rates of 20, 40, and 56 Gbit/s.
4. Conclusion
In summary, we have experimentally demonstrated an LNOI FP resonator modulator. We form the on-chip cavity by integrating two DBRs and an 800 µm modulation region. The fabricated device exhibits a high modulation efficiency of 15.7 pm/V and open eye diagrams up to 56 Gbit/s. Our results suggest a new avenue for utilizing the excellent material properties of LN for very small footprints and a highly efficient optical modulator with good potential in future optical interconnects applications.
References
[1] R. S. Weis, T. K. Gaylord. Lithium niobate: summary of physical properties and crystal structure. Appl. Phys. A, 37, 191(1985).
[2] A. Honardoost, K. Abdelsalam, S. Fathpour. Rejuvenating a versatile photonic material: thin-film lithium niobate. Laser Photon. Rev., 14, 2000088(2020).
[3] C. Wang, M. Zhang, X. Chen, M. Bertrand, A. Shams-Ansari, S. Chandrasekhar, P. Winzer, M. Lončar. Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages. Nature, 562, 101(2018).
[4] V. E. Stenger, J. Toney, A. PoNick, D. Brown, B. Griffin, R. Nelson, S. Sriram. Low loss and low Vpi thin film lithium niobate on quartz electro-optic modulators. 2017 European Conference on Optical Communication (ECOC), 1(2017).
[5] M. He, M. Xu, Y. Ren, J. Jian, Z. Ruan, Y. Xu, S. Gao, S. Sun, X. Wen, L. Zhou, L. Liu, C. Guo, H. Chen, S. Yu, L. Liu, X. Cai. High-performance hybrid silicon and lithium niobate Mach–Zehnder modulators for 100 Gbit s−1 and beyond. Nat. Photon., 13, 359(2019).
[6] X. Wang, P. O. Weigel, J. Zhao, M. Ruesing, S. Mookherjea. Achieving beyond-100-GHz large-signal modulation bandwidth in hybrid silicon photonics Mach Zehnder modulators using thin film lithium niobate. APL Photon., 4, 096101(2019).
[7] S. Sun, M. He, M. Xu, X. Zhang, Z. Ruan, L. Zhou, L. Liu, L. Liu, S. Yu, X. Cai. High-speed modulator with integrated termination resistor based on hybrid silicon and lithium niobate platform. J. Lightwave Technol., 39, 1108(2020).
[8] M. Xu, M. He, H. Zhang, J. Jian, Y. Pan, X. Liu, L. Chen, X. Meng, H. Chen, Z. Li, X. Xiao, S. Yu, S. Yu, X. Cai. High-performance coherent optical modulators based on thin-film lithium niobate platform. Nat. Commun., 11, 3911(2020).
[9] L. Chen, Q. Xu, M. G. Wood, R. M. Reano. Hybrid silicon and lithium niobate electro-optical ring modulator. Optica, 1, 112(2014).
[10] A. Guarino, G. Poberaj, D. Rezzonico, R. Degl’Innocenti, P. Günter. Electro-optically tunable microring resonators in lithium niobate. Nat. Photon., 1, 407(2007).
[11] A. Rao, A. Patil, J. Chiles, M. Malinowski, S. Novak, K. Richardson, P. Rabiei, S. Fathpour. Heterogeneous microring and Mach–Zehnder modulators based on lithium niobate and chalcogenide glasses on silicon. Opt. Express, 23, 22746(2015).
[12] C. Wang, M. Zhang, B. Stern, M. Lipson, M. Loncar. Nanophotonic lithium niobate electro-optic modulators. Opt. Express, 26, 1547(2018).
[13] A. N. R. Ahmed, S. Shi, A. J. Mercante, D. W. Prather. High-performance racetrack resonator in silicon nitride–thin film lithium niobate hybrid platform. Opt. Express, 27, 30741(2019).
[14] M. R. Escalé, D. Pohl, A. Sergeyev, R. Grange. Extreme electro-optic tuning of Bragg mirrors integrated in lithium niobate nanowaveguides. Opt. Lett., 43, 1515(2018).
[15] M. R. Escalé, D. Pohl, W. Heni, B. Baeuerle, A. Josten, A. Sergeyev, J. Leuthold, R. Grange. Integrated electro-optic Bragg modulators in lithium niobate nanowaveguides. Advanced Photonics 2018, IW4I.4(2018).
[16] J. Wang, P. Chen, D. Dai, L. Liu. Polarization coupling of X-cut thin film lithium niobate based waveguides. IEEE Photon. J., 12, 2200310(2020).
[17] J. Jian, P. Xu, H. Chen, M. He, Z. Wu, L. Zhou, L. Liu, C. Yang, S. Yu. High-efficiency hybrid amorphous silicon grating couplers for sub-micron-sized lithium niobate waveguides. Opt. Express, 26, 29651(2018).
[18] X. Xiao, X. Y. Li, H. Xu, Y. T. Hu, K. Xiong, Z. Y. Li, T. Chu, J. Z. Yu, Y. D. Yu. 44-Gb/s silicon microring modulators based on zigzag PN junctions. IEEE Photon. Technol. Lett., 24, 1712(2012).
[19] G. Li, A. V. Krishnamoorthy, I. Shubin, J. Yao, Y. Luo, H. Thacker, X. Zheng, K. Raj, J. E. Cunningham. Ring resonator modulators in silicon for interchip photonic links. IEEE J. Sel. Top. Quantum Electron., 19, 3401819(2013).
[20] T. Baba, S. Akiyama, M. Imai, N. Hirayama, H. Takahashi, Y. Noguchi, T. Horikawa, T. Usuki. 50-Gb/s ring-resonator-based silicon modulator. Opt. Express, 21, 11869(2013).
[21] Y. Tong, Z. Hu, X. Wu, S. Liu, L. Chang, A. Netherton, C. Chan, J. E. Bowers, H. K. Tsang. An experimental demonstration of 160-Gbit/s PAM-4 using a silicon micro-ring modulator. IEEE Photon. Technol. Lett., 32, 125(2019).
[22] M. Li, J. Ling, Y. He, U. A. Javid, S. Xue, Q. Lin. Lithium niobate photonic-crystal electro-optic modulator. Nat. Commun., 11, 4123(2020).
[23] J. Muller, F. Merget, S. S. Azadeh, J. Hauck, S. R. Garcia, B. Shen, J. Witzens. Optical peaking enhancement in high-speed ring modulators. Sci. Rep., 4, 6310(2014).
[24] H. Yu, D. Q. Ying, M. Pantouvaki, J. Van Campenhout, P. Absil, Y. L. Hao, J. Y. Yang, X. Q. Jiang. Trade-off between optical modulation amplitude and modulation bandwidth of silicon micro-ring modulators. Opt. Express, 22, 15178(2014).
[25] M. Bahadori, Y. Yang, A. E. Hassanien, L. L. Goddard, S. Gong. Theory of coupled harmonics and its application to resonant and non-resonant electro-optic modulators. J. Lightwave Technol., 38, 5756(2020).
[26] J. P. Salvestrini, L. Guilbert, M. Fontana, M. Abarkan, S. Gille. Analysis and control of the DC drift in LiNbO3-based Mach–Zehnder modulators. J. Lightwave Technol., 29, 1522(2011).
[27] S. Sun, M. He, M. Xu, S. Gao, Z. Chen, X. Zhang, Z. Ruan, X. Wu, L. Zhou, L. Liu, C. Lu, C. Guo, L. Liu, S. Yu, X. Cai. Bias-drift-free Mach–Zehnder modulators based on a heterogeneous silicon and lithium niobate platform. Photon. Res., 8, 1958(2020).

Set citation alerts for the article
Please enter your email address