• High Power Laser and Particle Beams
  • Vol. 32, Issue 11, 112002 (2020)
Feng Wang, Xing Zhang, Yulong Li, Bolun Chen, Zhongjing Chen, Tao Xu, Xincheng Liu, Hang Zhao, Kuan Ren, Jiamin Yang, Shaoen Jiang, and Baohan Zhang
Author Affiliations
  • Laser Fusion Research Center, CAEP, P. O. Box 919-988, Mianyang 621900, China
  • show less
    DOI: 10.11884/HPLPB202032.200136 Cite this Article
    Feng Wang, Xing Zhang, Yulong Li, Bolun Chen, Zhongjing Chen, Tao Xu, Xincheng Liu, Hang Zhao, Kuan Ren, Jiamin Yang, Shaoen Jiang, Baohan Zhang. Progress in high time- and space-resolving diagnostic technique for laser-driven inertial confinement fusion[J]. High Power Laser and Particle Beams, 2020, 32(11): 112002 Copy Citation Text show less
    References

    [1] Hurricane O A, Callahan D A, Casey D T. Inertially confined fusion plasmas dominated by alpha-particle self-heating[J]. Nature Physics, 12, 800-806(2016).

    [2] Meezan N B, Edwards M J, Hurricane O A. Indirect drive ignition at the National Ignition Facility[J]. Plasma Physics and Controlled Fusion, 59, 014021(2017).

    [3] Kline J L, Batha S H, Benedetti L R. Progress of indirect drive inertial confinement fusion in the United States[J]. Nuclear Fusion, 59, 112018(2019).

    [4] Clark D S, Weber C R, Milovich J L. Three-dimensional simulations of low foot and high foot implosion experiments on the National Ignition Facility[J]. Physics of Plasmas, 23, 056302(2016).

    [5] Gao Liang, Liang Jinyang, Li Chiye. Single-shot compressed ultrafast photography at one hundred billion frames per second[J]. Nature, 516, 74-77(2014).

    [6] Engelhorn K, Hilsabeck T J, Kilkenny J. Sub-nanosecond single line-of-sight (SLOS) X-ray imagers (invited)[J]. Review of Scientific Instruments, 89, 10G123(2018).

    [7] Theobald W, Sorce C, Bedzyk M. The single-line-of-sight, time-resolved X-ray imager diagnostic on OMEGA[J]. Review of Scientific Instruments, 89, 10G117(2018).

    [8] Nagel S R, Hilsabeck T J, Bell P M. Investigating high speed phenomena in laser plasma interactions using dilation X-ray imager[J]. Review of Scientific Instruments, 85, 11E504(2014).

    [9] Hilsabeck T J, Nagel A R, Hares J D, et.al. Picosecond imaging of inertial confinement fusion plasmas using electron pulsedilation[C] Proc of SPIE.2017: 1032805.

    [10] Nakagawa K, Iwasaki A, Oishi Y. Sequentially timed all-optical mapping photography (STAMP)[J]. Nature Photonics, 8, 695-700(2014).

    [11] Pickworth L A, McCarville T, Decker T. A Kirkpatrick-Baez microscope for the National Ignition Facility[J]. Review of Scientific Instruments, 85, 11D611(2014).

    [12] Pickworth L A, Ayers J, Bell P. The National Ignition Facility modular Kirkpatrick-Baez microscope[J]. Review of Scientific Instruments, 87, 11E316(2016).

    [13] Marshall F J, Bahr R E, Goncharov V N. A framed, 16-image Kirkpatrick–Baez X-ray microscope[J]. Review of Scientific Instruments, 88, 093702(2017).

    [14] Rosch R, Trosseille C, Caillaud T. First set of gated X-ray imaging diagnostics for the Laser Megajoule facility[J]. Review of Scientific Instruments, 87, 033706(2016).

    [15] Zhang X, Chen Z, Li Y. A four-channels reflective Kirkpatrick-Baez microscope for the hot spot diagnostic in the 100 kJ laser driven inertial confinement fusion in China[J]. J Instrum, 14, C11010(2019).

    [16] Yaran, L i, Baozhong. Development of an X-ray eight-image Kirkpatrick-Baez diagnostic system for China's laser fusion facility[J]. Applied Optics, 56, 3311-3318(2017).

    [17] Xie Q, Mu B, Li Y. Development of high resolution dual-energy KBA microscope with large field of view for RT-instability diagnostics at SG-III facility[J]. Optics Express, 25, 2608-2617(2017).

    [18] Pikuz T A, Faenov A Y, Skobelev I Y, et al. Highly efficient Xray imaging backlighting schemes based on spherically bent crystals[C] Proc of SPIE. 2004: 5196: 362374.

    [19] Aglitskiy Y, Lehecka T, Obenschain S. High-resolution monochromatic X-ray imaging system based on spherically bent crystals[J]. Applied Optics, 37, 5253-5261(1998).

    [23] Chen Bolun, Yang Zhenghua, Wei Minxi. Implosion dynamics measurements by monochromatic X-ray radiography in inertial confinement fusion[J]. Physics of Plasmas, 21, 122705(2014).

    [24] Bradley D K, Bell P M, Landen O L. Development and characterization of a pair of 30-40 ps X-ray framing cameras[J]. Review of Scientific Instruments, 66, 1(1995).

    [25] Hilsabeck T J, Hares J D, Kilkenny J D. Pulse-dilation enhanced gated optical imager with 5 ps resolution (invited)[J]. Review of Scientific Instruments, 81, 10E317(2010).

    [26] Nagel S R, Hilsabeck T J, Bell P M. Dilation X-ray imager a new/faster gated X-ray imager for the NIF[J]. Review of Scientific Instruments, 83, 10E116(2012).

    [27] Engelhn K, Hilsabeck T J, Kilkenny J D, et al. Single LineOfSight (SLOS) Xray imagers[C] High Temperature Plasma Diagnostic Conference. 2018.

    [28] Ress D, Lerche R A, Ellis R J. Neutron imaging of laser fusion targets[J]. Science, 241, 956-958(1988).

    [29] Disdier L, Rouyer A, Wilson D C. High-resolution neutron imaging of laser imploded DT targets[J]. Nuclear Instruments & Methods in Physics Research, 489, 496-502(2002).

    [30] Christensen C R, Barnes C W, Morgan G L. First results of pinhole neutron imaging for inertial confinement fusion[J]. Review of Scientific Instruments, 74, 2690-2694(2003).

    [31] Disdier L, Rouyer A, Lantuejoul I. Inertial confinement fusion neutron images[J]. Physics of Plasmas, 13, 056317(2006).

    [32] Grim G P, Bradley P A, Day R D, et al. Neutron imaging development f megajoule scale inertial confinement fusion experiments[C]Journal of Physics Conference Series. 2008, 112: 032078.

    [33] Caillaud T, Landoas O, Briat M. Development of the large neutron imaging system for inertial confinement fusion experiments[J]. Review of Scientific Instruments, 83, 033502(2012).

    [34] Merrill F E, Bower D, Buckles R. The neutron imaging diagnostic at NIF[J]. Review of Scientific Instruments, 83, 10D317(2012).

    [35] Volegov P L, Danley C R, Fittinghoff D N. Neutron source reconstruction from pinhole imaging at National Ignition Facility[J]. Review of Scientific Instruments, 85, 023508(2014).

    [36] Volegov P L, Danley C R, Fittinghoff D N. Self characterization of a coded aperture array for neutron source imaging[J]. Review of Scientific Instruments, 85, 123506(2014).

    [37] Fatherley V E, Barker D A, Fittinghoff D N, et al. Design of the aperture array f neutron imaging from the nth pole of the National Ignition Facility[C] Proc of SPIE. 2016: 99660B.

    [38] Fatherley V E, Fittinghoff D N, Hibbard R L. Aperture design for the third neutron and first gamma-ray imaging systems for the National Ignition Facility[J]. Review of Scientific Instruments, 89, 10I127(2018).

    [39] Lerche R A, Ress D, Ellis R J. Neutron penumbral imaging of laser-fusion targets[J]. Laser & Particle Beams, 9, 99-118(1991).

    [43] Chen Z, Zhang X, Wang F. Design of neutron imaging aperture for inertial confinement fusion in laser fusion research center[J]. Journal of Instrumentation, 14, C11007(2019).

    [44] Ng R. Digital light field photography[M]. Palo Atto: Stanfd University, 2006.

    [46] Mousnier A, Vural E, Guillemot C. Partial light field tomographic reconstruction from a fixed-camera focal stack[J]. Computer Science, arxiv: 1503.01P03, 1-10(2015).

    CLP Journals

    [1] Qiangqiang Zhang, Minghai Yu, Lai Wei, Zuhua Yang, Yong Chen, Quanping Fan. Spectrum measurements for picosecond laser produced X-ray sources[J]. High Power Laser and Particle Beams, 2022, 34(12): 122004

    Feng Wang, Xing Zhang, Yulong Li, Bolun Chen, Zhongjing Chen, Tao Xu, Xincheng Liu, Hang Zhao, Kuan Ren, Jiamin Yang, Shaoen Jiang, Baohan Zhang. Progress in high time- and space-resolving diagnostic technique for laser-driven inertial confinement fusion[J]. High Power Laser and Particle Beams, 2020, 32(11): 112002
    Download Citation