• Opto-Electronic Engineering
  • Vol. 51, Issue 11, 240208-1 (2024)
Miao Li, Nuo Chen, Wei An*, Boyang Li..., Qiang Ling and Weixing Li|Show fewer author(s)
Author Affiliations
  • College of Electronic Science and Technology, National University of Defense Technology, Changsha, Hunan 410073, China
  • show less
    DOI: 10.12086/oee.2024.240208 Cite this Article
    Miao Li, Nuo Chen, Wei An, Boyang Li, Qiang Ling, Weixing Li. Dual view fusion detection method for event camera detection of unmanned aerial vehicles[J]. Opto-Electronic Engineering, 2024, 51(11): 240208-1 Copy Citation Text show less
    References

    [1] A Bouguettaya, H Zarzour, A Kechida et al. Vehicle detection from UAV imagery with deep learning: a review. IEEE Trans Neural Netw Learn Syst, 33, 6047-6067(2022).

    [2] H Y Chen, D B Liu, X W Yan. Infrared image UAV target detection algorithm based on IDOU-YOLO. Journal of Applied Optics, 45, 723-731(2024).

    [3] J T Han, K Tan, W G Zhang et al. Identification of salt marsh vegetation “fairy circles” using random forest method and spatial-spectral data of unmanned aerial vehicle LiDAR. Opto-Electron Eng, 51, 230188(2024).

    [4] S Park, Y Choi. Applications of unmanned aerial vehicles in mining from exploration to reclamation: a review. Minerals, 10, 663(2020).

    [5] D Sziroczak, D Rohacs, J Rohacs. Review of using small UAV based meteorological measurements for road weather management. Prog Aerosp Sci, 134, 100859(2022).

    [6] Z Y Wang, Q Gao, J B Xu et al. A review of UAV power line inspection, 3147-3159(2022). https://doi.org/10.1007/978-981-15-8155-7_263

    [7] A Khan, S Gupta, S K Gupta. Emerging UAV technology for disaster detection, mitigation, response, and preparedness. J Field Robot, 39, 905-955(2022).

    [8] Y Li, M Liu, D D Jiang. Application of unmanned aerial vehicles in logistics: a literature review. Sustainability, 14, 14473(2022).

    [9] I Mademlis, V Mygdalis, N Nikolaidis et al. High-level multiple-UAV cinematography tools for covering outdoor events. IEEE Trans Broadcast, 65, 627-635(2019).

    [10] Y D Xi, Y Yu, Y Y Ding et al. An optoelectronic system for fast search of low slow small target in the air. Opto-Electron Eng, 45, 170654(2018).

    [11] R M Zhang, Y F Xiao, Z N Jia et al. Improved YOLOv7 algorithm for target detection in complex environments from UAV perspective. Opto-Electron Eng, 51, 240051(2024).

    [12] X Chen, D L Peng, Y Gu. Real-time object detection for UAV images based on improved YOLOv5s. Opto-Electron Eng, 49, 210372(2022).

    [13] M C Zhang, C H Niu, L S Liu et al. Infrared small target detection algorithm for UAV detection system. Laser Technol, 48, 114-120(2024).

    [14] A Sedunov, D Haddad, H Salloum et al. Stevens drone detection acoustic system and experiments in acoustics UAV tracking, 1-7(2019). https://doi.org/10.1109/HST47167.2019.9032916

    [15] F L Chiper, A Martian, C Vladeanu et al. Drone detection and defense systems: Survey and a software-defined radio-based solution. Sensors, 22, 1453(2022).

    [16] Quevedo Á D de, F I Urzaiz, J G Menoyo et al. Drone detection and radar-cross-section measurements by RAD-DAR. IET Radar Sonar Navig, 13, 1437-1447(2019).

    [17] G Gallego, T Delbrück, G Orchard et al. Event-based vision: a survey. IEEE Trans Pattern Anal Mach Intell, 44, 154-180(2020).

    [18] W Shariff, M S Dilmaghani, P Kielty et al. Event cameras in automotive sensing: a review. IEEE Access, 12, 51275-51306(2024).

    [19] F Paredes-Vallés, K Y W Scheper, Croon G C H E De. Unsupervised learning of a hierarchical spiking neural network for optical flow estimation: from events to global motion perception. IEEE Trans Pattern Anal Mach Intell, 42, 2051-2064(2020).

    [20] L Cordone, B Miramond, P Thierion. Object detection with spiking neural networks on automotive event data, 1-8(2022). https://doi.org/10.1109/IJCNN55064.2022.9892618

    [21] Y J Li, H Zhou, B B Yang et al. Graph-based asynchronous event processing for rapid object recognition, 914-923(2021). https://doi.org/10.1109/ICCV48922.2021.00097

    [22] S Schaefer, D Gehrig, D Scaramuzza. AEGNN: asynchronous event-based graph neural networks, 12361-12371(2022). https://doi.org/10.1109/CVPR52688.2022.01205

    [23] Z Y Jiang, P F Xia, K Huang et al. Mixed frame-/event-driven fast pedestrian detection, 8332-8338(2019). https://doi.org/10.1109/ICRA.2019.8793924

    [24] X Lagorce, G Orchard, F Galluppi et al. HOTS: a hierarchy of event-based time-surfaces for pattern recognition. IEEE Trans Pattern Anal Mach Intell, 39, 1346-1359(2017).

    [25] A Zhu, L Z Yuan, K Chaney et al. Unsupervised event-based learning of optical flow, depth, and egomotion, 989-997(2019). https://doi.org/10.1109/CVPR.2019.00108

    [26] D S Wang, X Jia, Y Zhang et al. Dual memory aggregation network for event-based object detection with learnable representation, 2492-2500(2023). https://doi.org/10.1609/aaai.v37i2.25346

    [27] J N Li, J Li, L Zhu et al. Asynchronous spatio-temporal memory network for continuous event-based object detection. IEEE Trans Image Process, 31, 2975-2987(2022).

    [28] Y S Peng, Y Y Zhang, Z W Xiong et al. GET: group event transformer for event-based vision, 6015-6025(2023). https://doi.org/10.1109/ICCV51070.2023.00555

    [29] N F Y Chen. Pseudo-labels for supervised learning on dynamic vision sensor data, applied to object detection under ego-motion, 644-653(2018). https://doi.org/10.1109/CVPRW.2018.00107

    [30] S Afshar, A P Nicholson, S A Van et al. Event-based object detection and tracking for space situational awareness. IEEE Sensors Journal, 20, 15117-15132(2020).

    [31] H M Huang, L F Lin, R F Tong et al. UNet 3+: a full-scale connected UNet for medical image segmentation, 1055-1059(2020). https://doi.org/10.1109/ICASSP40776.2020.9053405

    [32] C Y Wang, A Bochkovskiy, H Y M Liao. YOLOv7: trainable bag-of-freebies sets new state-of-the-art for real-time object detectors, 7464-7475(2023). https://doi.org/10.1109/CVPR52729.2023.00721

    [33] W Liu, D Anguelov, D Erhan et al. SSD: single shot multibox detector, 21-37(2016). https://doi.org/10.1007/978-3-319-46448-0_2

    [34] R Girshick. Fast R-CNN, 1440-1448(2015). https://doi.org/10.1109/ICCV.2015.169

    [35] R Q Charles, H Su, M Kaichun. PointNet: deep learning on point sets for 3D classification and segmentation, 77-85(2017). https://doi.org/10.1109/CVPR.2017.16

    [36] R Q Charles, L Yi, H Su et al. PointNet++: deep hierarchical feature learning on point sets in a metric space, 5105-5114(2017). https://dl.acm.org/doi/abs/10.5555/3295222.3295263

    [37] M Gehrig, D Scaramuzza. Recurrent vision transformers for object detection with event cameras, 13884-13893(2023). https://doi.org/10.1109/CVPR52729.2023.01334

    [38] Y S Peng, H B Li, Y Y Zhang et al. Scene adaptive sparse transformer for event-based object detection, 16794-16804(2024). https://doi.org/10.1109/CVPR52733.2024.01589

    [39] B Y Li, C Xiao, L G Wang et al. Dense nested attention network for infrared small target detection. IEEE Trans Image Process, 32, 1745-1758(2023).

    [40] Y M Dai, X Li, F Zhou et al. One-stage cascade refinement networks for infrared small target detection. IEEE Trans Geosci Remote Sens, 61, 5000917(2023).

    Miao Li, Nuo Chen, Wei An, Boyang Li, Qiang Ling, Weixing Li. Dual view fusion detection method for event camera detection of unmanned aerial vehicles[J]. Opto-Electronic Engineering, 2024, 51(11): 240208-1
    Download Citation