• Infrared and Laser Engineering
  • Vol. 47, Issue 9, 918009 (2018)
Wang Yunxin1、2、*, Xu Jiahao1, Zhou Tao3, Wang Dayong1、2, Yang Dengcai1、2, and Zhong Xin3
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • 3[in Chinese]
  • show less
    DOI: 10.3788/irla201847.0918009 Cite this Article
    Wang Yunxin, Xu Jiahao, Zhou Tao, Wang Dayong, Yang Dengcai, Zhong Xin. Frequency-quadruple signal generation based on dual-parallel Mach-Zehnder modulator[J]. Infrared and Laser Engineering, 2018, 47(9): 918009 Copy Citation Text show less
    References

    [1] Capmany J, Mora J, Gasulla I, et al. Microwave photonic signal processing[J]. Journal of Lightwave Technology, 2013, 31(4): 571-586.

    [3] Wang Yunxin, Li Jingnan, Du Haozheng, et al. Mircowave photonic down-conversion method using intensity-phase cascaded modulation[J]. Optics and Precision Engineering, 2017, 25(4): 827-834. (in Chinese)

    [4] Gan L, Liu J, Li F, et al. An optical millimeter-wave generator using optical higher order sideband injection locking in a Fabry-Pérot laser diode[J]. Journal of Lightwave Technology, 2015, 33(23): 4985-4996.

    [5] Arafin S, Simsek A, Kim S K, et al. Towards chip-scale optical frequency synthesis based on optical heterodyne phase-locked loop[J]. Optics Express, 2017, 25(2): 681-695.

    [6] Zheng J, Sun W, Wang W, et al. Frequency-doubling optoelectronic oscillator using polarization property of LiNbO3 modulator[J]. IEEE Photonics Technology Letters, 2015: 1-1.

    [7] Jia Q, Zhang P, Wang T, et al. 40 GHz narrow linewidth frequency-switched microwave signal generation based on a single-longitudinal-mode-double-Brillouin-frequency spaced Brillouin fiber laser[J]. Applied Optics, 2017, 56(19): 5323.

    [8] O′Reilly J J, Lane P M, Heidemann R, et al. Optical generation of very narrow linewidth millimetre wave signals[J]. Electronics Letters, 1992, 28(25): 2309-2311.

    [9] Long Jie, Li Zhenyong, Ye Zhuxiong, et al. Frequency multiplication of microwave photonic signal based on biased Mach-Zehnder modulator[J]. Infrared and Laser Engineering, 2014, 43(12): 4078-4081. (in Chinese)

    [10] Qi G, Yao J, Seregelyi J, et al. Generation and distribution of a wide-band continuously tunable millimeter-wave signal with an optical external modulation technique[J]. IEEE Transactions on Microwave Theory & Techniques, 2005, 53(10): 3090-3097.

    [11] Zhao Y, Zheng X, Wen H, et al. Simplified optical millimeter-wave generation configuration by frequency quadrupling using two cascaded Mach-Zehnder modulators[J]. Optics Letters, 2009, 34(21): 3250-3252.

    [12] Yu J, Jia Z, Wang T, et al. Centralized lightwave radio-over-viber system with photonic frequency quadrupling for high-frequency millimeter-wave generation[J]. IEEE Photonics Technology Letters, 2007, 19(19): 1499-1501.

    [13] Lin C T, Shih P T, Chen J, et al. Optical millimeter-wave up-conversion employing frequency quadrupling without optical filtering[J]. IEEE Transactions on Microwave Theory & Techniques, 2009, 57(8): 2084-2092.

    [14] Lv Min. Study on the key technologies of RoF system based on DPMZM[D]. Beijing: Beijing Institute of Technology, 2011. (in Chinese)

    [15] Zheng H, Wen A, Gao Y, et al. Photonic frequency sextupling scheme based on two intensity modulators and a Sagnac loop[J]. Microwave & Optical Technology Letters, 2017, 59(4): 853-857.

    [16] Gao Y, Wen A, Jiang W, et al. Photonic microwave generation with frequency octupling based on a DP-QPSK modulator[J]. IEEE Photonics Technology Letters, 2015, 27(21): 2260-2263.

    [17] Zhu Zihang, Zhao Shanghong, Yao Zhoushi, et al. Analysis of influence of phase shift drift and splitting ratio on octupling-frequency optical millimeterwave generation and distribution[J]. Infrared and Laser Engineering, 2012, 41(8): 2112-2118. (in Chinese)

    Wang Yunxin, Xu Jiahao, Zhou Tao, Wang Dayong, Yang Dengcai, Zhong Xin. Frequency-quadruple signal generation based on dual-parallel Mach-Zehnder modulator[J]. Infrared and Laser Engineering, 2018, 47(9): 918009
    Download Citation