• Chinese Optics Letters
  • Vol. 21, Issue 11, 113001 (2023)
Zhihui Jiang1, Shen Zhang1, Congxi Song1, Hongmin Mao1, Xin Zhao2, Huanjun Lu1、*, and Zhaoliang Cao1、**
Author Affiliations
  • 1Jiangsu Key Laboratory of Micro and Nano Heat Fluid Flow Technology and Energy Application, School of Physical Science and Technology, Suzhou University of Science and Technology, Suzhou 215009, China
  • 2School of Chemistry and Life Sciences, Suzhou University of Science and Technology, Suzhou 215009, China
  • show less
    DOI: 10.3788/COL202321.113001 Cite this Article Set citation alerts
    Zhihui Jiang, Shen Zhang, Congxi Song, Hongmin Mao, Xin Zhao, Huanjun Lu, Zhaoliang Cao. Improvement of Raman spectrum uniformity of SERS substrate based on flat electrode[J]. Chinese Optics Letters, 2023, 21(11): 113001 Copy Citation Text show less
    References

    [1] Y. Li, H. Chen, Y. Guo, K. Wang, Y. Zhang, P. Lan, J. Guo, W. Zhang, H. Zhong, Z. Guo. Lamellar hafnium ditelluride as an ultrasensitive surface-enhanced Raman scattering platform for label-free detection of uric acid. Photonics Res., 9, 1039(2021).

    [2] C. L. Huang, S. P. Jiang, F. X. Kou, M. T. Guo, S. Li, G. J. Yu, B. Zheng, F. Y. Xie, C. Zhang, H. L. Yu, J. Wang. Development of jellyfish-like ZnO@Ag substrate for sensitive SERS detection of melamine in milk. Appl. Surf. Sci., 600, 154153(2022).

    [3] L. Zhang, M. Q. Zhao, M. Xiao, M. H. Im, A. M. Abd El-Aty, H. Shao, Y. X. She. Recent advances in the recognition elements of sensors to detect pyrethroids in food: a review. Biosensors, 12, 402(2022).

    [4] Y. Liu, Y. Chen, Y. Zhang, Q. Kou, Y. Zhang, Y. Wang, L. Chen, Y. Sun, H. Zhang, Y. M. Jung. Detection and identification of estrogen based on surface-enhanced resonance Raman scattering (SERRS). Molecules, 23, 1330(2018).

    [5] Z. Li, J. Wang, D. Li. Applications of Raman spectroscopy in detection of water quality. Appl. Spectrosc. Rev., 51, 333(2015).

    [6] S. E. J. Bell, G. Charron, E. Cortes, J. Kneipp, M. L. de la Chapelle, J. Langer, M. Prochazka, V. Tran, S. Schlucker. Towards reliable and quantitative surface-enhanced Raman scattering (SERS): from key parameters to good analytical practice. Angew. Chem. Int. Ed., 59, 5454(2020).

    [7] C. Cheng, J. Li, H. Lei, B. Li. Surface enhanced Raman scattering of gold nanoparticles aggregated by a gold-nanofilm-coated nanofiber. Photonics Res., 6, 357(2018).

    [8] A. Campion, P. Kambhampati. Surface-enhanced Raman scattering. Chem. Soc. Rev., 27, 241(1998).

    [9] B. Sharma, R. R. Frontiera, A. I. Henry, E. Ringe, R. P. Van Duyne. SERS: materials, applications, and the future. Mater. Today, 15, 16(2012).

    [10] H. Y. Chen, M. H. Lin, C. Y. Wang, Y. M. Chang, S. Gwo. Large-scale hot spot engineering for quantitative SERS at the single-molecule scale. J. Am. Chem. Soc., 137, 13698(2015).

    [11] C. Chen, Y. Li, S. Kerman, P. Neutens, K. Willems, S. Cornelissen, L. Lagae, T. Stakenborg, P. Van Dorpe. High spatial resolution nanoslit SERS for single-molecule nucleobase sensing. Nat. Commun., 9, 1733(2018).

    [12] H. K. Lee, Y. H. Lee, C. S. L. Koh, C. P. Q. Gia, X. M. Han, C. L. Lay, H. Y. F. Sim, Y. C. Kao, Q. An, X. Y. Ling. Designing surface-enhanced Raman scattering (SERS) platforms beyond hotspot engineering: emerging opportunities in analyte manipulations and hybrid materials. Chem. Soc. Rev., 48, 731(2019).

    [13] Y. N. Wang, M. Zhang, H. Ma, H. Y. Su, A. S. Li, W. D. Ruan, B. Zhao. Surface plasmon resonance from gallium-doped zinc oxide nanoparticles and their electromagnetic enhancement contribution to surface-enhanced Raman scattering. ACS Appl. Mater. Interfaces, 13, 35038(2021).

    [14] L. M. Tong, T. Zhu, Z. F. Liu. Approaching the electromagnetic mechanism of surface-enhanced Raman scattering: from self-assembled arrays to individual gold nanoparticles. Chem. Soc. Rev., 40, 1296(2011).

    [15] C. H. Dai, Z. H. Lin, K. Agarwal, C. Mikhael, A. Aich, K. Gupta, J. H. Cho. Self-assembled 3D nanosplit rings for plasmon-enhanced optofluidic sensing. Nano Lett., 20, 6697(2020).

    [16] Y. T. Long, H. Li, Z. J. Du, M. M. Geng, Z. R. Liu. Confined Gaussian-distributed electromagnetic field of tin(II) chloride-sensitized surface-enhanced Raman scattering (SERS) optical fiber probe: from localized surface plasmon resonance (LSPR) to waveguide propagation. J. Colloid Interface Sci., 581, 698(2021).

    [17] S. Y. Ding, J. Yi, J. F. Li, B. Ren, D. Y. Wu, R. Panneerselvam, Z. Q. Tian. Nanostructure-based plasmon-enhanced Raman spectroscopy for surface analysis of materials. Nat. Rev. Mater., 1, 16021(2016).

    [18] A. Kaminska, I. Dziecielewski, J. L. Weyher, J. Waluk, S. Gawinkowski, V. Sashuk, M. Fialkowski, M. Sawicka, T. Suski, S. Porowski, R. Holyst. Highly reproducible, stable and multiply regenerated surface-enhanced Raman scattering substrate for biomedical applications. J. Mater. Chem., 21, 8662(2011).

    [19] V. T. N. Linh, J. Moon, C. Mun, V. Devaraj, J. W. Oh, S. G. Park, D. H. Kim, J. Choo, Y. I. Lee, H. S. Jung. A facile low-cost paper-based SERS substrate for label-free molecular detection. Sens. Actuators B, 291, 369(2019).

    [20] X. Wang, L. Zhu, Z. Zhu, S. Chang, J. Qian, J. Jiang, X. Wang, A. Li, L. Jiang, Y. Cao. Simultaneously improved SERS sensitivity and thermal stability on Ag dendrites via surface protection by atomic layer deposition. Appl. Surf. Sci., 611, 155626(2022).

    [21] S. R. Si, W. K. Liang, Y. H. Sun, J. Huang, W. L. Ma, Z. Q. Liang, Q. L. Bao, L. Jiang. Facile fabrication of high-density sub-1-nm gaps from Au nanoparticle monolayers as reproducible SERS substrates. Adv. Funct. Mater., 26, 8137(2016).

    [22] C. P. Zhang, S. Chen, Z. L. Jiang, Z. Y. Shi, J. L. Wang, L. T. Du. Highly sensitive and reproducible SERS substrates based on ordered micropyramid array and silver nanoparticles. ACS Appl. Mater. Interfaces, 13, 29222(2021).

    [23] E. Murugan, S. Santhoshkumar, S. Govindaraju, M. Palanichamy. Silver nanoparticles decorated g-C3N4: an efficient SERS substrate for monitoring catalytic reduction and selective Hg2+ ions detection. Spectrochim. Acta Part A, 246, 119036(2021).

    [24] X. F. Liu, J. M. Ma, P. F. Jiang, J. L. Shen, R. W. Wang, Y. Wang, G. L. Tu. Large-scale flexible surface-enhanced Raman scattering (SERS) sensors with high stability and signal homogeneity. ACS Appl. Mater. Interfaces, 12, 45332(2020).

    [25] L. L. Zhang, X. D. Li, W. H. Liu, R. Hao, H. R. Jia, Y. Z. Dai, M. U. Amin, H. J. You, T. Li, J. X. Fang. Highly active Au NP microarray films for direct SERS detection. J. Mater. Chem. C, 7, 15259(2019).

    [26] Y. Yu, P. Zeng, C. Yang, J. Y. Gong, R. Q. Liang, Q. R. Ou, S. Y. Zhang. Gold-nanorod-coated capillaries for the SERS-based detection of thiram. ACS Appl. Nano Mater., 2, 598(2019).

    [27] S. Lin, W. L. Hasi, X. Lin, S. Q. Han, T. Xiang, S. Liang, L. Wang. Lab-on-capillary platform for on-site quantitative SERS analysis of surface contaminants based on Au@4-MBA@Ag core-shell nanorods. ACS Sens., 5, 1465(2020).

    [28] G. Demirel, H. Usta, M. Yilmaz, M. Celik, H. A. Alidagi, F. Buyukserin. Surface-enhanced Raman spectroscopy (SERS): an adventure from plasmonic metals to organic semiconductors as SERS platforms. J. Mater. Chem. C, 6, 5314(2018).

    [29] E. Cara, L. Mandrile, F. F. Lupi, A. M. Giovannozzi, M. Dialameh, C. Portesi, K. Sparnacci, N. De Leo, A. M. Rossi, L. Boarino. Influence of the long-range ordering of gold-coated Si nanowires on SERS. Sci. Rep., 8, 11305(2018).

    [30] C. Y. Gu, S. Q. Man, J. Q. Tang, Z. M. Zhao, Z. L. Liu, Z. Y. Zheng. Preparation of a monolayer array of silica@gold core-shell nanoparticles as a SERS substrate. Optik, 221, 165274(2020).

    [31] V. Peksa, P. Lebruskova, H. Sipova, J. Stepanek, J. Bok, J. Homola, M. Prochazka. Testing gold nanostructures fabricated by hole-mask colloidal lithography as potential substrates for SERS sensors: sensitivity, signal variability, and the aspect of adsorbate deposition. Phys. Chem. Chem. Phys., 18, 19613(2016).

    [32] V. Suresh, L. Ding, A. B. Chew, F. L. Yap. Fabrication of large-area flexible SERS substrates by nanoimprint lithography. ACS Appl. Nano Mater., 1, 886(2018).

    [33] E. P. Kozhina, S. A. Bedin, N. L. Nechaeva, S. N. Podoynitsyn, V. P. Tarakanov, S. N. Andreev, Y. V. Grigoriev, A. V. Naumov. Ag-nanowire bundles with gap hot spots synthesized in track-etched membranes as effective SERS-substrates. Appl. Sci., 11, 1375(2021).

    [34] Z. X. Ye, L. Lin, Z. Y. Tan, Y. J. Zeng, S. C. Ruan, J. Ye. Sub-100 nm multi-shell bimetallic gap-enhanced Raman tags. Appl. Surf. Sci., 487, 1058(2019).

    [35] Y. Sanguansap, K. Karn-orachai, R. Laocharoensuk. Tailor-made porous striped gold-silver nanowires for surface enhanced Raman scattering based trace detection of beta-hydroxybutyric acid. Appl. Surf. Sci., 500, 144049(2020).

    [36] T. H. Wu, Y. W. Lin. Surface-enhanced Raman scattering active gold nanoparticle/nanohole arrays fabricated through electron beam lithography. Appl. Surf. Sci., 435, 1143(2018).

    [37] G. J. Liu, K. G. Li, Y. B. Zhang, J. Du, S. Ghafoor, Y. H. Lu. A facile periodic porous Au nanoparticle array with high-density and built-in hotspots for SERS analysis. Appl. Surf. Sci., 527, 146807(2020).

    [38] L. Zhang, W. Zhang, F. Lu. Azimuthal vector beam exciting silver triangular nanoprisms for increasing the performance of surface-enhanced Raman spectroscopy. Photonics Res., 7, 1447(2019).

    [39] L. Zhang, C. Meng, G. Zhang. Nanofocusing of a metallized double periodic arranged nanocone array for surface-enhanced Raman spectroscopy. Opt. Express, 29, 28086(2021).

    [40] Y. Zhang, C. L. Yang, X. J. Xiang, P. G. Zhang, Z. H. Peng, Z. L. Cao, Q. Q. Mu, L. Xuan. Highly effective surface-enhanced fluorescence substrates with roughened 3D flowerlike silver nanostructures fabricated in liquid crystalline phase. Appl. Surf. Sci., 401, 297(2017).

    [41] Y. Zhang, C. L. Yang, B. Xue, Z. H. Peng, Z. L. Cao, Q. Q. Mu, L. Xuan. Highly effective and chemically stable surface enhanced Raman scattering substrates with flower-like 3D Ag-Au hetero-nanostructures. Sci. Rep., 8, 898(2018).

    [42] Q. Chen, C. Shi, L. Qin, S.-Z. Kang, X. Li. A low-cost 3D core-shell nanocomposite as ultrasensitive and stable surface enhanced Raman spectroscopy substrate. Sens. Actuators B, 327, 128907(2021).

    [43] S. Zhang, Z. H. Jiang, Y. J. Liang, Y. L. Shen, H. M. Mao, H. J. Sun, X. Zhao, X. P. Li, W. S. Hu, G. D. Xu, Z. L. Cao. Effect of the duty cycle of flower-like silver nanostructures fabricated with a lyotropic liquid crystal on the SERS spectrum. Molecules, 26, 6522(2021).

    [44] Z. H. Jiang, S. Zhang, H. M. Mao, H. J. Lu, X. P. Li, W. S. Hu, G. D. Xu, Z. L. Cao. Raman spectroscopic conformity of SERS substrate fabricated with lyotropic liquid crystal. Chin. J. Liq. Cryst. Disp., 37, 806(2022).

    Zhihui Jiang, Shen Zhang, Congxi Song, Hongmin Mao, Xin Zhao, Huanjun Lu, Zhaoliang Cao. Improvement of Raman spectrum uniformity of SERS substrate based on flat electrode[J]. Chinese Optics Letters, 2023, 21(11): 113001
    Download Citation