• Laser & Optoelectronics Progress
  • Vol. 51, Issue 11, 110001 (2014)
Liu Zhi*, Zhang Xu, He Chao, Huang Wenqi, Xue Chunlai, and Cheng Buwen
Author Affiliations
  • [in Chinese]
  • show less
    DOI: 10.3788/lop51.110001 Cite this Article Set citation alerts
    Liu Zhi, Zhang Xu, He Chao, Huang Wenqi, Xue Chunlai, Cheng Buwen. Progress in Study of Si-based Group IV Optoelectronic Devices (I)——Lasers[J]. Laser & Optoelectronics Progress, 2014, 51(11): 110001 Copy Citation Text show less
    References

    [1] M Hochberg, T Baehr-Jones. Towards fabless silicon photonics [J]. Nature Photonics, 2010, 4(8): 492-494.

    [2] R Won, M Paniccia. Integrating silicon photonics [J]. Nature Photonics, 2010, 4(8): 498-499.

    [3] S S Iyer, Y H Xie. Light emission from silicon [J]. Science, 1993, 260(5104): 40-46.

    [4] D Liang, J E Bowers. Recent progress in lasers on silicon [J]. Nature Photonics, 2010, 4(8): 511-517.

    [5] H S Rong, R Jones, A S Liu, et al.. A continuous-wave Raman silicon laser [J]. Nature, 2005, 433(7027): 725-728.

    [6] H S Rong, A S Liu, R C Jones, et al.. An all-silicon Raman laser [J]. Nature, 2005, 433(7023): 292-294.

    [7] R Jones, H D Park, A W Fang, et al.. Hybrid silicon integration [J]. Journal of Materials Science: Materials in Electronics, 2009, 20(1): 3-9.

    [8] H Y Liu, T Wang, Q Jiang, et al.. Long-wavelength InAs/GaAs quantum-dot laser diode monolithically grown on Ge substrate [J]. Nature Photonics, 2011, 5(7): 416-419.

    [9] T Wang, H Y Liu, A Lee, et al.. 1.3 mm InAs/GaAs quantum-dot lasers monolithically grown on Si substrates [J]. Opt Express, 2011, 19(12): 11381-11386.

    [10] M V Fischetti, S E Laux. Band structure, deformation potentials, and carrier mobility in strained Si, Ge, and SiGe alloys [J]. J Appl Phys, 1996, 80(4): 2234-2252.

    [11] J F Liu, D D Cannon, K Wada, et al.. Deformation potential constants of biaxially tensile stressed Ge epitaxial films on Si(100) [J]. Phys Rev B, 2004, 70(15): 155309.

    [12] Z Liu, B W Cheng, Y M Li, et al.. Effects of high temperature rapid thermal annealing on Ge films grown on Si(001) substrate [J]. Chin Phys B, 2013, 22(11): 116804.

    [13] X C Sun, J F Liu, L C Kimerling, et al.. Direct gap photoluminescence of n-type tensile-strained Ge-on-Si [J]. Appl Phys Lett, 2009, 95(1): 011911.

    [14] J F Liu, X C Sun, L C Kimerling, et al.. Direct-gap optical gain of Ge on Si at room temperature [J]. Opt Lett, 2009, 34(11): 1738-1740.

    [15] X X Wang, L C Kimerling, J Michel, et al.. Large inherent optical gain from the direct gap transition of Ge thin films [J]. Appl Phys Lett, 2013, 102(13): 131116.

    [16] Y Bai, K E Lee, C W Cheng, et al.. Growth of highly tensile-strained Ge on relaxed InxGa1-xAs by metal-organic chemical vapor deposition [J]. J Appl Phys, 2008, 104(8): 084518.

    [17] Y J Huo, H Lin, R Chen, et al.. Strong enhancement of direct transition photoluminescence with highly tensile-strained Ge grown by molecular beam epitaxy [J]. Appl Phys Lett, 2011, 98(1): 011111.

    [18] N Pavarelli, T J Ochalski, F Murphy-Armando, et al.. Optical emission of a strained direct-band-gap Ge quantum well embedded inside InGaAs alloy layers [J]. Phys Rev Lett, 2013, 110(17): 177404.

    [19] Y Y Fang, J Tolle, R Roucka, et al.. Perfectly tetragonal, tensile-strained Ge on Ge1-ySny buffered Si(100) [J]. Appl Phys Lett, 2007, 90(6): 061915.

    [20] Y Y Fang, J Tolle, J Tice, et al.. Epitaxy-driven synthesis of elemental Ge/Si strain-engineered materials and device structures via designer molecular chemistry [J]. Chemistry of Materials, 2007, 19(24): 5910-5925.

    [21] Y Shimura, N Tsutsui, O Nakatsuka, et al.. Low temperature growth of Ge1-xSnx buffer layers for tensile-strained Ge layers [J]. Thin Solid Films, 2010, 518(6): S2-S5.

    [22] P H Lim, S Park, Y Ishikawa, et al.. Enhanced direct bandgap emission in germanium by micromechanical strain engineering [J]. Opt Express, 2009, 17(18): 16358-16365.

    [23] J R Jain, A Hryciw, T M Baer, et al.. A micromachining-based technology for enhancing germanium light emission via tensile strain [J]. Nature Photonics, 2012, 6(6): 398-405.

    [24] M J Süess, R Geiger, R A Minamisawa, et al.. Analysis of enhanced light emission from highly strained germanium microbridges [J]. Nature Photonics, 2013, 7(6): 466-472.

    [25] G Capellini, C Reich, S Guha, et al.. Tensile Ge microstructures for lasing fabricated by means of a silicon complementary metal-oxide-semiconductor process [J]. Opt Express, 2014, 22(1): 399-410.

    [26] W X Hu, B W Cheng, C L Xue, et al.. Electroluminescence from Ge on Si substrate at room temperature [J]. Appl Phys Lett, 2009, 95(9): 092102.

    [27] X C Sun, J F Liu, L C Kimerling, et al.. Room-temperature direct bandgap electroluminesence from Ge-on-Si lightemitting diodes [J]. Opt Lett, 2009, 34(8): 1198-1200.

    [28] S L Cheng, J Lu, G Shambat, et al.. Room temperature 1.6 microm electroluminescence from Ge light emitting diode on Si substrate [J]. Opt Express, 2009, 17(12): 10019-10024.

    [29] Y H Chen, C Li, Z W Zhou, et al.. Room temperature photoluminescence of tensile-strained Ge/Si0.13Ge0.87 quantum wells grown on silicon-based germanium virtual substrate [J]. Appl Phys Lett, 2009, 94(14): 141902.

    [30] J F Liu, X C Sun, R Camacho-Aguilera, et al.. Ge-on-Si laser operating at room temperature [J]. Opt Lett, 2010, 35(5): 679-681.

    [31] P Chaisakul, D Marris-Morini, G Isella, et al.. Room temperature direct gap electroluminescence from Ge/Si0.15Ge0.85 multiple quantum well waveguide [J]. Appl Phys Lett, 2011, 99(14): 141106.

    [32] Z Liu, W X Hu, C Li, et al.. Room temperature direct-bandgap electroluminescence from n-type strain-compensated Ge/SiGe multiple quantum wells [J]. Appl Phys Lett, 2012, 101(23): 231108.

    [33] R E Camacho-Aguilera, Y Cai, N Patel, et al.. An electrically pumped germanium laser [J]. Opt Express, 2012, 20(10): 11316-11320.

    [34] R E Camacho-Aguilera, Y Cai, T Bessette Jonathan, et al.. High active carrier concentration in n-type, thin film Ge using delta-doping [J]. Optical Materials Express, 2012, 2(11): 1462-1469.

    [35] L Carroll, P Friedli, S Neuenschwander, et al.. Direct-gap gain and optical absorption in germanium correlated to the density of photoexcited carriers, doping, and strain [J]. Phys Rev Lett, 2012, 109(5): 057402.

    [36] G Grzybowski, R T Beeler, L Jiang, et al.. Next generation of Ge1-ySny (y=0.01-0.09) alloys grown on Si(100) via Ge[sub 3]H[sub 8] and SnD[sub 4]: reaction kinetics and tunable emission [J]. Appl Phys Lett, 2012, 101(7): 072105.

    [37] J Taraci, J Tolle, J Kouvetakis, et al.. Simple chemical routes to diamond-cubic germanium – tin alloys [J]. Appl Phys Lett, 2001, 78(23): 3607-3609.

    [38] J Taraci, S Zollner, M R McCartney, et al.. Synthesis of silicon-based infrared semiconductors in the GeSn system using molecular chemistry methods [J]. Journal of the American Chemical Society, 2001, 123(44): 10980-10987.

    [39] F Gencarelli, B Vincent, L Souriau, et al.. Low-temperature Ge and GeSn chemical vapor deposition using Ge2H6 [J]. Thin Solid Films, 2012, 520(8): 3211-3215.

    [40] S J Su, B W Cheng, C L Xue, et al.. GeSn p-i-n photodetector for all telecommunication bands detection [J]. Opt Express, 2011, 19(7): 6408-6413.

    [41] D L Zhang, C L Xue, B W Cheng, et al.. High-responsivity GeSn short-wave infrared p-i-n photodetectors [J]. Appl Phys Lett, 2013, 102(14): 141111.

    [42] R Chen, H Lin, Y J Huo, et al.. Increased photoluminescence of strain-reduced, high-Sn composition Ge1-xSnx alloys grown by molecular beam epitaxy [J]. Appl Phys Lett, 2011, 99(18): 181125.

    [43] M Oehme, J Werner, M Gollhofer, et al.. Room-temperature electroluminescence from GeSn light-emitting pin diodes on Si [J]. IEEE Photon Technol Lett, 2011, 23(23): 1751-1753.

    [44] G Grzybowski, L Jiang, J Mathews, et al.. Photoluminescence from heavily doped GeSn:P materials grown on Si(100)[J]. Appl Phys Lett, 2011, 99(17): 171910.

    [45] R Roucka, J Mathews, R T Beeler, et al.. Direct gap electroluminescence from Si/Ge1-ySny p-i-n heterostructure diodes [J]. Appl Phys Lett, 2011, 98(6): 061109.

    [46] H H Tseng, K Y Wu, H Li, et al.. Mid-infrared electroluminescence from a Ge/Ge0.922Sn0.078/Ge double heterostructure pi-n diode on a Si substrate [J]. Appl Phys Lett, 2013, 102(18): 182106.

    [47] J P Gupta, N Bhargava, S C Kim, et al.. Infrared electroluminescence from GeSn heterojunction diodes grown by molecular beam epitaxy [J]. Appl Phys Lett, 2013, 102(25): 251117.

    [48] G Sun, H H Cheng, J M Menéndez, et al.. Strain-free Ge/GeSiSn quantum cascade lasers based on L-valley intersubband transitions [J]. Appl Phys Lett, 2007, 90(25): 251105.

    [49] G Sun, R A Soref, H H Cheng. Design of an electrically pumped SiGeSn/GeSn/SiGeSn double-heterostructure midinfrared laser [J]. J Appl Phys, 2010, 108(3): 033107.

    [50] G Sun, R A Soref, H H Cheng. Design of a Si-based lattice-matched room-temperature GeSn/GeSiSn multi-quantumwell mid-infrared laser diode [J]. Opt Express, 2010, 18(19): 19957-19965.

    [51] Y H Zhu, Q Xu, W J Fan, et al.. Theoretical gain of strained GeSn0.02Ge1-x-y,SixSny, quantum well laser [J]. J Appl Phys, 2010, 107(7): 073108.

    [52] G E Chang, S W Chang, S L Chuang. Strain-balanced GezSn1-z-SixGeySn1-x-y multiple-quantum-well lasers [J]. IEEE J Quantum Electron, 2010, 46(12): 1813-1820.

    [53] W Q Huang, B W Cheng, C L Xue, et al.. Comparative studies of clustering effect, electronic and optical properties for GePb and GeSn alloys with low Pb and Sn concentration [J]. Physica B: Condensed Matter, 2014, 443: 43-48.

    CLP Journals

    [1] Liu Chunling, Dou Yu, Chen Chen, Wang Chunwu, Jiang Wenlong. Performance of Oxygen Passivation Silicon-Based ZnO/Nanoporous Si Pillar Array Heterojunction Near White Light LED[J]. Laser & Optoelectronics Progress, 2016, 53(11): 112302

    [2] Cao Liping, Chen Zhandong, Wu Qiang, Zhang Chunling, Yao Jianghong. Effect of Annealing on Transient Photoluminescence Properties of Microstructured Black Silicon[J]. Acta Optica Sinica, 2015, 35(5): 530001

    Liu Zhi, Zhang Xu, He Chao, Huang Wenqi, Xue Chunlai, Cheng Buwen. Progress in Study of Si-based Group IV Optoelectronic Devices (I)——Lasers[J]. Laser & Optoelectronics Progress, 2014, 51(11): 110001
    Download Citation