• Advanced Photonics
  • Vol. 2, Issue 5, 055001 (2020)
Han Lin1、*, Scott Fraser1, Minghui Hong2, Manish Chhowalla3, Dan Li4、5, and Baohua Jia1、*
Author Affiliations
  • 1Swinburne University of Technology, Centre for Microphotonics, Faculty of Science, Engineering, and Technology, Hawthorn, Australia
  • 2National University of Singapore, Department of Electrical and Computer Engineering, Singapore
  • 3Rutgers University, Department of Materials Science and Engineering, Piscataway, New Jersey, United States
  • 4University of Melbourne, Department of Chemical Engineering, Melbourne, Australia
  • 5Monash University, Monash Centre for Atomically Thin Materials, Department of Materials Science and Engineering, Clayton, Australia
  • show less
    DOI: 10.1117/1.AP.2.5.055001 Cite this Article Set citation alerts
    Han Lin, Scott Fraser, Minghui Hong, Manish Chhowalla, Dan Li, Baohua Jia. Near-perfect microlenses based on graphene microbubbles[J]. Advanced Photonics, 2020, 2(5): 055001 Copy Citation Text show less
    References

    [1] R. Dijkink, C.-D. Ohl. Laser-induced cavitation based micropump. Lab Chip, 8, 1676-1681(2008).

    [2] P. Garstecki et al. Mixing with bubbles: a practical technology for use with portable microfluidic devices. Lab Chip, 6, 207-212(2006).

    [3] M. Lee et al. Stabilization and fabrication of microbubbles: applications for medical purposes and functional materials. Soft Matter, 11, 2067-2079(2015).

    [4] M. Prakash, N. Gershenfeld. “Microfluidic bubble logic. Science, 315, 832-835(2007).

    [5] P. Prentice et al. Membrane disruption by optically controlled microbubble cavitation. Nat. Phys., 1, 107-110(2005).

    [6] K. Modjarrad, S. S. Dastgheyb, S. Ebnesajjad, J. R. Eisenbrey. Microbubble applications in biomedicine. Handbook of Polymer Applications in Medicine and Medical Devices, 253-277(2014).

    [7] T. Okamoto, T. Suzuki, N. Yamamoto. Microarray fabrication with covalent attachment of DNA using bubble jet technology. Nat. Biotechnol., 18, 438-441(2000).

    [8] L. Lin et al. Bubble-pen lithography. Nano Lett., 16, 701-708(2016).

    [9] M. Sumetsky, Y. Dulashko, R. Windeler. Optical microbubble resonator. Opt. Lett., 35, 898-900(2010).

    [10] X. Zhang, D. Lohse. Perspectives on surface nanobubbles. Biomicrofluidics, 8, 041301(2014).

    [11] J. Zabel et al. Raman spectroscopy of graphene and bilayer under biaxial strain: bubbles and balloons. Nano Lett., 12, 617-621(2012).

    [12] T. Georgiou et al. Graphene bubbles with controllable curvature. Appl. Phys. Lett., 99, 093103(2011).

    [13] Y. Yang et al. Graphene-based multilayered metamaterials with phototunable architecture for on-chip photonic devices. ACS Photonics, 6, 1033-1040(2019).

    [14] H. Lin et al. A 90-nm-thick graphene metamaterial for strong and extremely broadband absorption of unpolarized light. Nat. Photonics, 13, 270-276(2019).

    [15] K.-T. Lin et al. Structured graphene metamaterial selective absorbers for high efficiency and omnidirectional solar thermal energy conversion. Nat. Commun., 11, 1389(2020).

    [16] S. K. Sundaram, E. Mazur. Inducing and probing non-thermal transitions in semiconductors using femtosecond laser pulses. Nat. Mater., 1, 217-224(2002).

    [17] X. Zheng et al. Laser trimming of graphene oxide for functional photonic applications. J. Phys. D Appl. Phys., 50, 074003(2017).

    [18] Y. L. Zhang et al. Photoreduction of graphene oxides: methods, properties, and applications. Adv. Opt. Mater., 2, 10-28(2014).

    [19] H. Zhang et al. Ultrahigh heating rate induced micro-explosive production of graphene for energy storage. J. Power Sour., 442, 227224(2019).

    [20] T. Yang et al. Tailoring pores in graphene-based materials: from generation to applications. J. Mater. Chem. A, 5, 16537-16558(2017).

    [21] X. Zheng et al. Highly efficient and ultra-broadband graphene oxide ultrathin lenses with three-dimensional subwavelength focusing. Nat. Commun., 6, 8433(2015).

    [22] G. Cao et al. Resilient graphene ultrathin flat lens in aerospace, chemical, and biological harsh environment. ACS Appl. Mater. Interfaces, 11, 20298-20303(2019).

    [23] G. Cao et al. An accurate design of graphene oxide ultrathin flat lens based on Rayleigh-Sommerfeld theory. Opto-Electron. Adv., 1, 180012(2018).

    [24] X. Li et al. Graphene metalens for particle nanotracking. Photonics Res., 8, 1316-1322(2020).

    [25] J. Li, B. Jia, M. Gu. Engineering stop gaps of inorganic-organic polymeric 3D woodpile photonic crystals with post-thermal treatment. Opt. Express, 16, 20073-20080(2008).

    [26] A. Heifetz et al. Photonic nanojets. J. Comput. Theor. Nanosci., 6, 1979-1992(2009).

    [27] B. Born et al. Integration of photonic nanojets and semiconductor nanoparticles for enhanced all-optical switching. Nat. Commun., 6, 8097(2015).

    [28] F. Qin et al. Shaping a subwavelength needle with ultra-long focal length by focusing azimuthally polarized light. Sci. Rep., 5, 9977(2015).

    CLP Journals

    [1] Shibiao Wei, Guiyuan Cao, Han Lin, Haoran Mu, Wenbo Liu, Xiaocong Yuan, Michael Somekh, Baohua Jia. High tolerance detour-phase graphene-oxide flat lens[J]. Photonics Research, 2021, 9(12): 2454

    Han Lin, Scott Fraser, Minghui Hong, Manish Chhowalla, Dan Li, Baohua Jia. Near-perfect microlenses based on graphene microbubbles[J]. Advanced Photonics, 2020, 2(5): 055001
    Download Citation