• Laser & Optoelectronics Progress
  • Vol. 56, Issue 14, 141101 (2019)
Weixin Deng, Xiaodong Chen*, Jin Yang, Jiarui Ji, Yi Wang, and Huaiyu Cai
Author Affiliations
  • Key Laboratory of Opto-Electronic Information Technology, Ministry of Education, School of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin 300072, China
  • show less
    DOI: 10.3788/LOP56.141101 Cite this Article Set citation alerts
    Weixin Deng, Xiaodong Chen, Jin Yang, Jiarui Ji, Yi Wang, Huaiyu Cai. Ultrasound Endoscopic Imaging Algorithm Based on Coded Excitation and Coherence Factor[J]. Laser & Optoelectronics Progress, 2019, 56(14): 141101 Copy Citation Text show less
    Principle of Golay coding to eliminate distance side lobes. (a) Autocorrection function of sequence A; (b) autocorrection function of sequence B; (c) sum of complementary sequence autocorrection functions
    Fig. 1. Principle of Golay coding to eliminate distance side lobes. (a) Autocorrection function of sequence A; (b) autocorrection function of sequence B; (c) sum of complementary sequence autocorrection functions
    Flow chart of CFCS algorithm
    Fig. 2. Flow chart of CFCS algorithm
    Simulation results of coded excitation ultrasound imaging. (a) Barker coded excitation imaging; (b) coded excitation imaging of Golay complementary sequences
    Fig. 3. Simulation results of coded excitation ultrasound imaging. (a) Barker coded excitation imaging; (b) coded excitation imaging of Golay complementary sequences
    Axial energy expansions of two coding methods (z=25 mm)
    Fig. 4. Axial energy expansions of two coding methods (z=25 mm)
    Imaging simulation results of different algorithms. (a) SA algorithm; (b) CFSA algorithm; (c) CFBarkerSA algorithm; (d) CFCS algorithm
    Fig. 5. Imaging simulation results of different algorithms. (a) SA algorithm; (b) CFSA algorithm; (c) CFBarkerSA algorithm; (d) CFCS algorithm
    Lateral energy expansions of four algorithms (z=30 mm)
    Fig. 6. Lateral energy expansions of four algorithms (z=30 mm)
    Axial energy expansions of four algorithms (z=25 mm)
    Fig. 7. Axial energy expansions of four algorithms (z=25 mm)
    CharacterGolay codingBarker coding
    Maximum coding lengthUnlimited13
    Launching times per image21
    PulsecompressionMatched-filterMismatched-filter
    Algorithm complexityEasyComplicated
    Side lobesLowHigh
    Table 1. Comparison between Golay coding and Barker coding
    ParameterValue
    Speed of sound wave /(m·s-1)1540
    Number of the elements32
    Center frequency of the sound wave /MHz5
    Sampling frequency /MHz100
    Element width /mm0.24
    Length of the complementary sequences32
    Duration of a single-chip code /μs1
    Number of scattering points6
    Table 2. Parameters of Field II acoustic field simulation model
    Position /mmLateral resolution /mm
    SACFSACFBarkerSACFCS
    251.060.710.710.71
    301.140.810.810.82
    351.270.960.960.98
    401.571.131.131.14
    501.781.461.461.47
    552.041.711.721.68
    Table 3. Lateral resolutions at different positions
    AlgorithmCFSACFBarkerSACFCS
    RSN /dB20.531.738.4
    Table 4. Signal-to-noise ratios of images generated by different algorithms
    Weixin Deng, Xiaodong Chen, Jin Yang, Jiarui Ji, Yi Wang, Huaiyu Cai. Ultrasound Endoscopic Imaging Algorithm Based on Coded Excitation and Coherence Factor[J]. Laser & Optoelectronics Progress, 2019, 56(14): 141101
    Download Citation