• Laser & Optoelectronics Progress
  • Vol. 56, Issue 16, 161403 (2019)
Ning Fan1、*, Hongbing Yao2、*, Xia Ye1, Jiawei Cong1, and Weihua Zhu2
Author Affiliations
  • 1 School of Mechanical Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
  • 2 College of Science, Hohai University, Nanjing, Jiangsu 210098, China
  • show less
    DOI: 10.3788/LOP56.161403 Cite this Article Set citation alerts
    Ning Fan, Hongbing Yao, Xia Ye, Jiawei Cong, Weihua Zhu. Failure Behavior of TC4 Titanium Alloy Under Strong Laser Loading[J]. Laser & Optoelectronics Progress, 2019, 56(16): 161403 Copy Citation Text show less
    References

    [1] Hopkinson B. A method of measuring the pressure produced in the detonation of high explosives or by the impact of bullets[J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 213, 437-456(1914).

    [2] Yang Y, Peng Z Q, Guo Z L et al. Spall behavior of high purity copper under sliding detonation[J]. Journal of Materials Science and Engineering, 34, 32-37, 58(2016).

    [3] Liu X N, Yang S Y, Wen X et al. Phase transition and spallation of Ti-6Al-4V alloy under shock wave[J]. Chinese Journal of Rare Metals, 34, 325-330(2010).

    [4] Dong Y, Wang D, Wei Z et al. Numerical simulation and experimental study of temperature evolution of Si-APD irradiated by long-pulse laser[J]. Acta Optica Sinica, 38, 0514005(2018).

    [5] Zhu R, Zhang Y K, Sun G F et al. Numerical simulation of residual stress fields in three-dimensional flattened laser shocking of 2024 aluminum alloy[J]. Chinese Journal of Lasers, 44, 0802007(2017).

    [6] Rao X, Ye Y X, Zhao L et al. Experimental study on special-shaped parts of 2024 aluminum alloys by nano-laser peen forming[J]. Laser & Optoelectronics Progress, 55, 021407(2018).

    [7] Zhai S D, Li Y H, Peng J X et al. Spall behavior of pure aluminum under plate-impact and high energy laser shock loadings[J]. Explosion and Shock Waves, 36, 767-773(2016).

    [8] Yao H B, Yu W L, Gao Y et al. Numerical simulation of transient response process of L2 aluminum sheet by laser loading high-speed forming[J]. Acta Photonica Sinica, 43, 0614001(2014).

    [9] Jiang W, Li Y Z, Liu J X et al. Modeling of metallic shear failure by void-based meso-damage model[J]. Journal of Huazhong University of Science and Technology (Natural Science Edition), 43, 24-29(2015).

    [10] Seaman L, Curran D R, Shockey D A. Computational models for ductile and brittle fracture[J]. Journal of Applied Physics, 47, 4814-4826(1976).

    [11] Sun B P, Duan Z P, Zhang H Y et al. Experiment and numerical simulation on ignition of charge by fragment impact[J]. Explosion and Shock Waves, 33, 456-462(2013).

    [12] Fabbro R, Fournier J, Ballard P et al. Physical study of laser-produced plasma in confined geometry[J]. Journal of Applied Physics, 68, 775-784(1990).

    [13] Rinehart J S. Some quantitative data bearing on the scabbing of metals under explosive attack[J]. Journal of Applied Physics, 22, 555-560(1951).

    [14] Huang Y, Jiang Y F, Jin H et al. Propagation of shock wave induced by ring laser and its effect on spalling[J]. Laser Technology, 37, 301-305(2013).

    [15] Wang F. Theoretical and experimental research on laser shock forming[D]. Shanghai: Shanghai Jiao Tong University, 15-37(2008).

    Ning Fan, Hongbing Yao, Xia Ye, Jiawei Cong, Weihua Zhu. Failure Behavior of TC4 Titanium Alloy Under Strong Laser Loading[J]. Laser & Optoelectronics Progress, 2019, 56(16): 161403
    Download Citation