• Photonic Sensors
  • Vol. 11, Issue 1, 123 (2021)
Ning AN1, Chenye QIN1、2, Yiwei LI1, Teng TAN1、2, Zhongye YUAN1, Hao ZHANG1, Yu WU1, Baicheng YAO1、*, and Yunjiang RAO1、2
Author Affiliations
  • 1Key Lab of Optical Fiber Sensing & Communications, University of Electronic Science &Technology of China, Chengdu 611731, China
  • 2Research Center for Optical Fiber Sensing, Zhejiang Laboratory, Hangzhou 310000, China
  • show less
    DOI: 10.1007/s13320-021-0617-6 Cite this Article
    Ning AN, Chenye QIN, Yiwei LI, Teng TAN, Zhongye YUAN, Hao ZHANG, Yu WU, Baicheng YAO, Yunjiang RAO. Graphene-Fiber Biochemical Sensors: Principles, Implementations, and Advances[J]. Photonic Sensors, 2021, 11(1): 123 Copy Citation Text show less
    References

    [1] B. Yao, Y. Wu, Z. Wang, Y. Cheng, Y. Rao, Y. Gong, et al., “Demonstration of complex refractive index of graphene waveguide by microfiber-based Mach-Zehnder interferometer,” Optics Express, 2013, 21(24): 29818–29826.

    [2] V. Semwal and B. D. Gupta, “Highly sensitive surface plasmon resonance based fiber optic pH sensor utilizing rGO-Pani nanocomposite prepared by in situ method,” Sensors and Actuators B: Chemical, 2019, 283: 632–642.

    [3] H. Ting and S. C. Kin, “Graphene-based ammonia-gas sensor using in-fiber Mach-Zehnder interferometer,” IEEE Photonics Technology Letters, 2017, 29(23): 2035–2038.

    [4] W. Xu, T. Yang, F. Qin, D. Gong, Y. Du, and G. Dai, “A sprayed graphene pattern-based flexible strain sensor with high sensitivity and fast response,” Sensors (Switzerland), 2019, 19(5): 1–11.

    [5] Z. Cao, B. Yao, C. Qin, R. Yang, Y. Guo,Y. Zhang, et al., “Biochemical sensing in graphene-enhanced microfiber resonators with individual molecule sensitivity and selectivity,” Light: Science & Applications, 2019, 8(1): 4–13.

    [6] J. A. Kim, T. Hwang, S. R. Dugasani, R. Amin, A. Kulkarni, S. H. Park, et al., “Graphene based fiber optic surface plasmon resonance for bio-chemical sensor applications,” Sensors and Actuators B: Chemical, 2013, 187: 426–433.

    [7] B. N. Shivananju, W. Yu, Y. Liu, Y. Zhang, B. Lin, et al., “The roadmap of graphene-based optical biochemical sensors,” Advanced Functional Materials., 2017, 27(19): 1–19.

    [8] H. Chen, R. Li, and F. Xu, “Optical microfiber sensors: sensing mechanisms, and recent advances,” Journal of Lightwave Technology, 2019, 37(11): 2577–2589.

    [9] L. Tong, “Micro/nanofibre optical sensors: challenges and prospects,” Sensors (Switzerland), 2018, 18(3): 903.

    [10] W. Choi, I. Lahiri, R. Seelaboyina, and Y. S. Kang, “Synthesis of graphene and its applications: a review,” Critical Reviews in Solid State and Materials Sciences, 2010, 35(1): 52–71.

    [11] A. K. Geim, “Graphene : status and prospects,” Science, 2009, 324(5934): 1530–1534.

    [12] M. J. Allen, V. C. Tung, and R. B. Kane, “Honeycomb carbon : a review of graphene,” Chemical Reviews, 2010, 110(1): 132–145.

    [13] F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nature Photonics, 2010, 4(9): 611–622.

    [14] R. J. Young, I. A. Kinloch, L. Gong, and K. S. Novoselov, “The mechanics of graphene nanocomposites: a review,” Composites Science and Technology, 2012, 72(12): 1459–1476.

    [15] H. Chang and H. Wu, “Graphene-based nanomaterials: synthesis, properties, and optical and optoelectronic applications,” Advanced Functional Materials, 2013, 23(16): 1984–1997.

    [16] W. Li, B. Chen, C. Meng, W. Fang, Y. Xiao, X. Li, et al., “Ultrafast all-optical graphene modulator,” Nano Letters, 2014, 14(2): 955–959.

    [17] A. Martinez and Z. Sun, “Nanotube and graphene saturable absorbers for fibre lasers,” Nature Photonics, 2013, 7(11): 842–845.

    [18] B. Yao, Y. Liu, S. W. Huang, C. Choi, Z. Xie, J. F. Flores, et al., “Broadband gate-tunable terahertz plasmons in graphene heterostructures,” Nature Photonics, 2018, 12(1): 22–28.

    [19] S. Y. Hong, J. I. Dadap, N. Petrone, P. C. Yeh, J. Hone, and R. M. Osgood, “Optical third-harmonic generation in graphene,” Physical Review X, 2013, 3(2): 021014.

    [20] B. Yao, C. Yu, Y. Wu, S. W. Huang, H. Wu, Y. Gong, et al., “Graphene-enhanced Brillouin optomechanical microresonator for ultrasensitive gas detection,” Nano Letters, 2017, 17(8): 4996–5002.

    [21] N. An, T. Tan, Z. Peng, C. Qin, Z. Yuan, L. Bi, et al., “Electrically tunable four-wave-mixing in graphene heterogeneous fiber for individual gas molecule detection,” Nano Letters, 2020, 20(9): 6473–6480.

    [22] A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, “The electronic properties of graphene,” Reviews of Modern Physics, 2009, 81(1): 109–162.

    [23] S. A. Mikhailov and K. Ziegler, “New electromagnetic mode in graphene,” Physical Review letters, 2007, 99(1): 1–4.

    [24] P. Zheng and N. Wu, “Fluorescence and sensing applications of graphene oxide and graphene quantum dots: a review,” Chemistry – An Asian Journal, 2017, 12(18): 2343–2353.

    [25] P. Avouris, Z. Chen, and V. Perebeinos, “Carbon-based electronics,” Nature Nanotechnology, 2007, 2(10): 605–615.

    [26] Y. Wu, B. Yao, C. Yu, and Y. Rao, “Optical graphene gas sensors based on microfibers: a review,” Sensors (Switzerland), 2018, 18(4): 941.

    [27] A. Das, S. Pisana, B. Chakraborty, S. Piscanec, S. K. Saha, U. V. Waghmare, et al., “Monitoring dopants by Raman scattering in an electrochemically top-gated graphene transistor,” Nature Nanotechnology, 2008, 3(4): 210–215.

    [28] U. Sampath, D. Kim, and M. Song, “Hemoglobin detection using a graphene oxide functionalized side-polished fiber sensor,” in SPIE Optics + Optoelectronics, Prague, Apirl, 2019, pp. 82.

    [29] S. E. U. Lima, R. G. Farias, F. M. Araújo, L. A. Ferreira, J. L. Santos, V. Miranda, et al., “Fiber laser sensor based on a phase-shifted chirped grating for acoustic sensing of partial discharges,” Photonic Sensors, 2013, 3(1): 44–51.

    [30] A. N. Grigorenko, M. Polini, and K. S. Novoselov, “Graphene plasmonics,” Nature Photonics, 2012, 6(11): 749–758.

    [31] W. Wei, J. Nong, Y. Zhu, G. Zhang, N. Wang, S. Luo, et al., “Graphene/Au-enhanced plastic clad silica fiber optic surface plasmon resonance sensor,” Plasmonics, 2018, 13(2): 483–491.

    [32] X. Yang, Z. Sun, T. Low, H. Hu, X. Guo, F. J. G. de Abajo, et al., “Nanomaterial-based plasmonenhanced infrared spectroscopy,” Advanced Materials, 2018, 30(20): 1704896.

    [33] G. X. Ni, A. S. McLeod, Z. Sun, L. Wang, L. Xiong, K. W. Post, et al., “Fundamental limits to graphene plasmonics,” Nature, 2018, 557(7706): 530–533.

    [34] R. B. Sekar and A. Periasamy, “Fluorescence resonance energy transfer (FRET) microscopy imaging of live cell protein localizations,” The Journal of Cell Biology, 2003, 160(5): 629–633.

    [35] B. Yao, Y. Wu, C. Yu, J. He, Y. Rao, Y. Gong, et al., “Partially reduced graphene oxide based FRET on fiber-optic interferometer for biochemical detection,” Scientific Reports, 2016, 6: 23706.

    [36] P. Suvarnaphaet and S. Pechprasarn, “Graphenebased materials for biosensors: a review,” Sensors (Switzerland), 2017, 17(10): 2161.

    [37] X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, et al., “Large-area synthesis of high-quality and uniform graphene films on copper foils,” Science, 2009, 324(5932): 1312–1314.

    [38] D. Parviz, F. Irin, S. A. Shah, S. Das, C. B. Sweeney, and M. J. Green, “Challenges in liquid-phase exfoliation, processing, and assembly of pristine graphene,” Advanced Materials, 2016, 28(40): 8796–8818.

    [39] M. Yi and Z. Shen, “A review on mechanical exfoliation for the scalable production of graphene,” Journal of Materials Chemistry A, 2015, 3(22): 11700–11715.

    [40] V. Sharma, Y. Jain, M. Kumari, R. Gupta, S. K. Sharma, S. K. Sharma, et al., “Synthesis and characterization of graphene oxide (GO) and reduced graphene oxide (rGO) for gas sensing application,” Macromolecular Symposia, 2017, 376(1): 1–5.

    [41] R. Mu-oz and C. Gómez-Aleixandre, “Review of CVD synthesis of graphene,” Chemical Vapor Deposition, 2013, 19(10-11-12): 297–322.

    [42] S. Perumbilavil, P. Sankar, T. Priya Rose, and R. Philip, “White light Z-scan measurements of ultrafast optical nonlinearity in reduced graphene oxide nanosheets in the 400–700 nm region,” Applied Physics Letters, 2015, 107(5): 051104.

    [43] T. Tan, X. Jiang, C. Wang, B. Yao, and H. Zhang, “2D material optoelectronics for information functional device applications: status and challenges,” Advanced Science, 2020, 7(11): 2000058.

    [44] K. Chen, X. Zhou, X. Cheng, R. Qiao, Y. Cheng, C. Liu, et al., “Graphene photonic crystal fibre with strong and tunable light-matter interaction,” Nature Photonics, 2019, 13(11): 754–759.

    [45] J. Ma, W. Jin, H. L. Ho, and J. Y. Dai, “High-sensitivity fiber-tip pressure sensor with graphene diaphragm,” Optics Letters, 2012, 37(13): 2493–2495.

    [46] S. Y. Choi, D. K. Cho, Y.-W. Song, K. Oh, K. Kim, et al., “Graphene-filled hollow optical fiber saturable absorber for efficient soliton fiber laser mode-locking,” Optics Express, 2012, 20(5): 5652–5657.

    [47] J. Kou, J. Chen, Y. Chen, F. Xu, and Y. Lu, “Platform for enhanced light-graphene interaction length and miniaturizing fiber stereo devices,” Optica, 2014, 1(5): 207–310.

    [48] C. Liu, B. Xu, L. Zhou, Z. Sun, H. Mao, J. Zhao, et al., “Graphene oxide functionalized long period fiber grating for highly sensitive hemoglobin detection,” Sensors and Actuators B: Chemical, 2018, 261: 91–96.

    [49] M. Gorji, A. Sadeghianmaryan, H. Rajabinejad, S. Nasherolahkam, and X. Chen, “Development of highly pH-sensitive hybrid membranes by simultaneous electrospinning of amphiphilic nanofibers reinforced with graphene oxide,” Journal of Functional Biomaterials, 2019, 10(2): 23.

    [50] M. B. Hossain, M. M. Islam, L. F. Abdulrazak, M. M. Rana, T. B. A. Akib, and M. Hassan, “Graphene-coated optical fiber SPR biosensor for BRCA1 and BRCA2 breast cancer biomarker detection: a numerical design-based analysis,” Photonic Sensors, 2020, 10(1): 67–79.

    [51] A. Syuhada, M. S. Shamsudin, S. Daud, G. Krishnan, S. W. Harun, and M. S. Abd Aziz, “Single-mode modified tapered fiber structure functionalized with GO-PVA composite layer for relative humidity sensing,” Photonic Sens-ors, DOI: 10.1007/s13320-020-0595-0.

    [52] A. Zhang, Y. Wu, B. Yao, and Y. Gong, “Optimization study on graphene-coated microfiber Bragg grating structures for ammonia gas sensing,” Photonic Sensors, 2015, 5(1): 84–90.

    [53] B. Yao, Y. Wu, Y. Chen, X. Liu, Y. Gong, and Y. Rao, “Graphene-based microfiber gas sensor,” in OFS2012 22nd International Conference on Optical Fiber Sensor, Beijing, 2012, pp. 8421CD-1–8421CD-4.

    [54] B. Yao, Y. Wu, Y. Cheng, A. Zhang, Y. Gong, Y. J. Rao, et al., “All-optical Mach-Zehnder interferometric NH3 gas sensor based on graphene/microfiber hybrid waveguide,” Sensors and Actuators B: Chemical, 2014, 194: 142–148.

    [55] B. Yao, Y. Wu, A. Zhang, F. Wang, Y. Rao, Y. Gong, et al., “Graphene Bragg gratings on microfiber,” Optics Express, 2014, 22(20): 23829–23835.

    [56] B. Yao, Y. Wu, A. Zhang, Y. Rao, Z. Wang, Y. Cheng, et al., “Graphene enhanced evanescent field in microfiber multimode interferometer for highly sensitive gas sensing,” Optics Express, 2014, 22(23): 28154–28162.

    [57] Y. Wu, B. Yao, A. Zhang, X. Cao, Z. Wang, Y. Rao, et al., “Graphene-based D-shaped fiber multicore mode interferometer for chemical gas sensing,” Optics Letters, 2014, 39(20): 6030–6033.

    [58] X. Feng, W. Feng, C. Tao, D. Deng, X. Qin, and R. Chen, “Hydrogen sulfide gas sensor based on graphene-coated tapered photonic crystal fiber interferometer,” Sensors and Actuators B: Chemical, 2017, 247: 540–545.

    [59] D. Pawar, B. V. B. Rao, and S. N. Kale, “Fe3O4-decorated graphene assembled porous carbon nanocomposite for ammonia sensing: study using an optical fiber Fabry-Perot interferometer,” Analyst, 2018, 143(8): 1890–1898.

    [60] S. Sridevi, K. S. Vasu, N. Bhat, S. Asokan, and A. K. Sood, “Ultra sensitive NO2 gas detection using the reduced graphene oxide coated etched fiber Bragg gratings,” Sensors and Actuators B: Chemical, 2016, 223: 481–486.

    [61] Y. Zhang, Y. Chen, K. Zhou, C. Liu, J. Zeng, H. Zhang, et al., “Improving gas sensing properties of graphene by introducing dopants and defects: a first-principles study,” Nanotechnology, 2009, 20(18): 185504.

    [62] C. Yu, Y. Wu, X. Liu, F. Fu, Y. Gong, Y. J. Rao, et al., “Miniature fiber-optic NH3 gas sensor based on Pt nanoparticle-incorporated graphene oxide,” Sensors and Actuators B: Chemical, 2017, 244: 107–113.

    [63] Y. Wang, C. Shen, W. Lou, and F. Shentu, “Fiber optic humidity sensor based on the graphene oxide/PVA composite film,” Optics Communications, 2016, 372: 229–234.

    [64] H. Fu, Y. Jiang, J. Ding, J. Zhang, M. Zhang, Y. Zhu, et al., “Zinc oxide nanoparticle incorporated graphene oxide as sensing coating for interferometric optical microfiber for ammonia gas detection,” Sensors and Actuators B: Chemical, 2018, 254: 239–247.

    [65] J. Zhang, H. Fu, J. Ding, M. Zhang, and Y. Zhu, “Graphene-oxide-coated interferometric optical microfiber ethanol vapor sensor,” Applied Optics, 2017, 56(31): 8828–8831.

    [66] S. Sridevi, K. S. Vasu, S. Asokan, and A. K. Sood, “Sensitive detection of C-reactive protein using optical fiber Bragg gratings,” Biosensors and Bioelectronics, 2015, 65: 251–256.

    [67] H. Qiu, S. Gao, P. Chen, Z. Li, X. Liu, C. Zhang, et al., “Evanescent wave absorption sensor based on tapered multimode fiber coated with monolayer graphene film,” Optics Communications, 2016, 366: 275–281.

    [68] V. Semwal and B. D. Gupta, “LSPR- and SPR-based fiber-optic cholesterol sensor using immobilization of cholesterol oxidase over silver nanoparticles coated graphene oxide nanosheets,” IEEE Sensors Journal, 2017, 18(3): 1039–1046.

    [69] P. Zhang, B. Lu, Y. Sun, H. Yu, K. Xu, and D. Li, “Side-polished flexible SPR sensor modified by graphene with in situ temperature self-compensation,” Biomedical Optics Express, 2019, 10(1): 215–225.

    [70] H. Yu, Y. Chong, P. Zhang, J. Ma, and D. Li, “A D-shaped fiber SPR sensor with a composite nanostructure of MoS2-graphene for glucose detection,” Talanta, 2020, 219: 121324.

    [71] A. K. Sharma and J. Gupta, “Graphene based chalcogenide fiber-optic evanescent wave sensor for detection of hemoglobin in human blood,” Optical Fiber Technology, 2018, 41: 125–130.

    [72] Q. Wang and B. Wang, “Sensitivity enhanced SPR immunosensor based on graphene oxide and SPA co-modified photonic crystal fiber,” Optics & Laser Technology, 2018, 107: 210–215.

    [73] Q. Wang and B. T. Wang, “Surface plasmon resonance biosensor based on graphene oxide/silver coated polymer cladding silica fiber,” Sensors and Actuators B: Chemical, 2018, 275: 332–338.

    [74] F. Esposito, L. Sansone, C. Taddei, S. Campopiano, M. Giordano, and A. Iadicicco, “Ultrasensitive biosensor based on long period grating coated with polycarbonate-graphene oxide multilayer,” Sensors and Actuators B: Chemical, 2018, 274: 517–526.

    [75] J. Zhou, Y. Huang, C. Chen, A. Xiao, T. Guo, and B. O. Guan, “Improved detection sensitivity of γ-aminobutyric acid based on graphene oxide interface on an optical microfiber,” Physical Chemistry Chemical Physics, 2018, 20(20): 14117–14123.

    [76] A. Aziz, H. N. Lim, S. H. Girei, M. H. Yaacob, M. A. Mahdi, N. M. Huang, et al., “Silver/graphene nanocomposite-modified optical fiber sensor platform for ethanol detection in water medium,” Sensors and Actuators B: Chemical, 2015, 206: 119–125.

    [77] B. Yao, Y. Wu, D. J. Webb, J. Zhou, Y. Rao, A. Pospori, et al., “Graphene-based D-shaped polymer FBG for highly sensitive erythrocyte detection,” IEEE Photonics Technology Letters, 2015, 27(22): 2399–2402.

    [78] J. K. Nayak, P. Parhi, and R. Jha, “Graphene oxide encapsulated gold nanoparticle based stable fibre optic sucrose sensor,” Sensors and Actuators B: Chemical, 2015, 221: 835–841.

    [79] W. Hu, Y. Huang, C. Chen, Y. Liu, T. Guo, and B. O. Guan, “Highly sensitive detection of dopamine using a graphene functionalized plasmonic fiber-optic sensor with aptamer conformational amplification,” Sensors and Actuators B: Chemical, 2018, 264: 440–447.

    [80] B. Yao, S. W. Huang, Y. Liu, A. K. Vinod, C. Choi, M. Hoff, et al., “Gate-tunable frequency combs in graphene-nitride microresonators,” Nature, 2018, 558(7710): 410–414.

    [81] H. Chen, Q. Ji, H. Wang, Q. Yang, Q. Cao, Q. Gong, et al., “Chaos-assisted two-octave-spanning microcombs,” Nature Communications, 2020, 11(1): 1–6.

    [82] J. Zhang, B. Peng, -. K. -zdemir, K. Pichler, D. O. Krimer, G. Zhao, et al., “A phonon laser operating at an exceptional point,” Nature Photonics, 2018, 12(8): 479–484.

    [83] W. Chen, -. K. -zdemir, G. Zhao, J. Wiersig, and L. Yang, “Exceptional points enhance sensing in an optical microcavity,” Nature, 2017, 548(7666): 192–196.

    [84] D. Rodrigo, O. Limaj, D. Janner, D. Etezadi, F. J. García De Abajo, V. Pruneri, et al., “Mid-infrared plasmonic biosensing with graphene,” Science, 2015, 349(6244): 165–168.

    [85] H. Wu, Z. Wang, F. Peng, Z. Peng, X. Li, Y. Wu, et al., “Field test of a fully distributed fiber optic intrusion detection system for long-distance security monitoring of national borderline,” in OFS2014 23rd International Conference on Optical Fiber Sensors, Spain, June 2, 2014, pp. 915790.

    [86] Z. Wang, J. Zeng, J. Li, F. Peng, L. Zhang, Y. Zhou, et al., “175 km phase-sensitive OTDR with hybrid distributed amplification,” in OFS2014 23rd International Conference on Optical Fiber Sensors, Spain, June 2, 2014, pp. 9157D5.

    [87] H. Wu, Y. Qian, W. Zhang, and C. Tang, “Feature extraction and identification in distributed optical-fiber vibration sensing system for oil pipeline safety monitoring,” Photonic Sensors, 2017, 7(4): 305–310.

    [88] T. Tan, C. Peng, Z. Yuan, X. Xie, H. Liu, Z. Xie, et al., “Predicting Kerr soliton combs in microresonators via deep neural networks,” Journal of Lightwave Technology, 2020, 38(23): 6591–6599.

    [89] R. Gao, D. F. Lu, J. Cheng, Y. Jiang, L. Jiang, and Z. Qi, “Humidity sensor based on power leakage at resonance wavelengths of a hollow core fiber coated with reduced graphene oxide,” Sensors and Actuators B: Chemical, 2016, 222: 618–624.

    [90] Y. Xiao, J. Yu, L. Shun, S. Tan, X. Cai, Y. Luo, et al., “Reduced graphene oxide for fiber-optic toluene gas sensing,” Optics Express, 2016, 24(25): 28290–28302.

    [91] N. M. Y. Zhang, K. Li, P. P. Shum, X. Yu, S. Zeng, Z. Wu, et al., “Hybrid graphene/gold plasmonic fiber-optic biosensor,” Advanced Materials Technologies, 2017, 2(2): 1600185.

    Ning AN, Chenye QIN, Yiwei LI, Teng TAN, Zhongye YUAN, Hao ZHANG, Yu WU, Baicheng YAO, Yunjiang RAO. Graphene-Fiber Biochemical Sensors: Principles, Implementations, and Advances[J]. Photonic Sensors, 2021, 11(1): 123
    Download Citation