• Laser & Optoelectronics Progress
  • Vol. 55, Issue 5, 051404 (2018)
Jingyu Hao, Bowen Liu*, Huanyu Song, Liang Wen, Jia Niu, Lu Chai, Minglie Hu, and Qingyue Wang
Author Affiliations
  • Ultrafast Laser Laboratory, College of Precision Instrument and Optoelectronics Engineering, Key Laboratory of Optoelectronic Information Technology, Ministry of Education, Tianjin University, Tianjin 300072, China
  • show less
    DOI: 10.3788/LOP55.051404 Cite this Article Set citation alerts
    Jingyu Hao, Bowen Liu, Huanyu Song, Liang Wen, Jia Niu, Lu Chai, Minglie Hu, Qingyue Wang. Femtosecond Fiber Amplification System Based on Third-Order Dispersion Compensation Technique[J]. Laser & Optoelectronics Progress, 2018, 55(5): 051404 Copy Citation Text show less
    References

    [1] Zhang X Q, He H, Hu M L et al. Optical SHG properties of GaAs nanowires irradiated with multi-wavelength femto-second laser pulses[J]. Acta Physica Sinica, 62, 076102(2013).

    [2] Wu Y Z, Liu B W, Song Y J et al. Micromachining system based on photonic crystal fiber femtosecond laser amplifier[J]. Chinese Journal of Lasers, 35, 1078-1082(2008).

    [3] Oliveira V, Sharma S P. Moura M F S F, et al. Surface treatment of CFRP composites using femtosecond laser radiation[J]. Optics and Lasers in Engineering, 94, 37-43(2017). http://www.sciencedirect.com/science/article/pii/S0143816616304894

    [4] Ferrari G, Cancio P, Drullinger R et al. Precision frequency measurement of visible intercombination lines of strontium[J]. Physical Review Letters, 91, 243002(2003). http://europepmc.org/abstract/MED/14683113

    [5] Yi Y Q, Huang B C, Ning D. Large mode area Yb 3+-doped double-clad optical fibers [J]. Acta Photonica Sinica, 37, 1928-1931(2008).

    [6] Liu Q W, Wang Q Y, Xue Y H et al. 2.41 W Ultrashort pulsed laser output from laser diode pumped Yb 3+-doped fiber amplifier [J]. Chinese Journal of Lasers, 35, 819-822(2008).

    [7] Wang L X, Cai J, Jiang P P et al. All fiberized high power linear polarized pulsed ytterbium-doped fiber laser[J]. Infrared and Laser Engineering, 43, 350-354(2014).

    [8] Limpert J, Clausnitzer T, Liem A et al. High-average-power femtosecond fiber chirped-pulse amplification system[J]. Optics Letters, 28, 1984-1986(2003). http://www.opticsinfobase.org/ol/abstract.cfm?id=74887

    [9] Eidam T, Hanf S, Seise E et al. Femtosecond fiber CPA system emitting 830 W average output power[J]. Optics Letters, 35, 94-96(2010). http://www.ncbi.nlm.nih.gov/pubmed/20081932

    [10] Eidam T, Rothhardt J, Stutzki F et al. Fiber chirped-pulse amplification system emitting 3.8 GW peak power[J]. Optics Express, 19, 255-260(2011). http://www.opticsinfobase.org/abstract.cfm?URI=oe-19-1-255

    [11] Stern M, Heritage J P, Chase E W. Grating compensation of third-order fiber dispersion[J]. IEEE Journal of Quantum Electronics, 28, 2742-2748(1992). http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=166468

    [12] Frenkel A, Heritage J P, Stern M. Compensation of dispersion in optical fibers for the 1.3-1.6 μm region with a grating and telescope[J]. IEEE Journal of Quantum Electronics, 25, 1981-1984(1989). http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=35221

    [13] Zhou S A, Kuznetsova L, Chong A et al. Compensation of nonlinear phase shifts with third-order dispersion in short-pulse fiber amplifiers[J]. Optics Express, 13, 4869-4877(2005). http://www.ncbi.nlm.nih.gov/pubmed/19498473

    [14] Liu B W, Hu M L, Song Y J et al. Photonic crystal fiber femtosecond laser amplifier with millijoules and 100 fs level output[J]. Chinese Journal of Lasers, 37, 2415-2418(2010).

    [15] Wen L, Liu B W, Song H Y et al. All polarization-maintaining fiber amplification system to generate high-power and high-quality femtosecond laser pulses[J]. Chinese Journal of Lasers, 44, 0201011(2017).

    [16] Chong A, Kuznetsova L, Wise F W. Theoretical optimization of nonlinear chirped-pulse fiber amplifiers[J]. Journal of the Optical Society of America B, 24, 1815-1823(2007). http://www.opticsinfobase.org/abstract.cfm?uri=josab-24-8-1815

    [17] Grüner-Nielsen L, Jakobsen D, Jespersen K G et al. A stretcher fiber for use in fs chirped pulse Yb amplifiers[J]. Optics Express, 18, 3768-3773(2010). http://www.ncbi.nlm.nih.gov/pubmed/20389387

    [18] Fernández A, Jespersen K, Zhu L et al. High-fidelity, 160 fs, 5 μJ pulses from an integrated Yb-fiber laser system with a fiber stretcher matching a simple grating compressor[J]. Optics Letters, 37, 927-929(2012). http://www.ncbi.nlm.nih.gov/pubmed/22378441

    [19] Mortag D, Theeg T, Hausmann K et al. Sub-200 fs microjoule pulses from a monolithic linear fiber CPA system[J]. Optics Communications, 285, 706-709(2012). http://www.sciencedirect.com/science/article/pii/S0030401811012363

    [20] Song H Y, Liu B W, Wen L et al. Optimization of nonlinear compensation in a high-energy femtosecond fiber CPA system by negative TOD fiber[J]. IEEE Photonics Journal, 9, 1-10(2017). http://ieeexplore.ieee.org/document/7876805/

    Jingyu Hao, Bowen Liu, Huanyu Song, Liang Wen, Jia Niu, Lu Chai, Minglie Hu, Qingyue Wang. Femtosecond Fiber Amplification System Based on Third-Order Dispersion Compensation Technique[J]. Laser & Optoelectronics Progress, 2018, 55(5): 051404
    Download Citation