• Advanced Photonics
  • Vol. 6, Issue 2, 026006 (2024)
Xiaomin Liu, Yihao Zhang, Yuli Chen, Yichen Liu, Meng Cai, Qizhi Qiu, Mengfan Fu, Lilin Yi, Weisheng Hu, and Qunbi Zhuge*
Author Affiliations
  • Shanghai Jiao Tong University, State Key Laboratory of Advanced Optical Communication Systems and Networks, Department of Electronic Engineering, Shanghai, China
  • show less
    DOI: 10.1117/1.AP.6.2.026006 Cite this Article Set citation alerts
    Xiaomin Liu, Yihao Zhang, Yuli Chen, Yichen Liu, Meng Cai, Qizhi Qiu, Mengfan Fu, Lilin Yi, Weisheng Hu, Qunbi Zhuge. Digital twin modeling and controlling of optical power evolution enabling autonomous-driving optical networks: a Bayesian approach[J]. Advanced Photonics, 2024, 6(2): 026006 Copy Citation Text show less
    References

    [1] P. J. Winzer, D. T. Neilson, A. R. Chraplyvy. Fiber-optic transmission and networking: the previous 20 and the next 20 years [Invited]. Opt. Express, 26, 24190-24239(2018).

    [2] B. Lee. Review of the present status of optical fiber sensors. Opt. Fiber Technol., 9, 57-79(2003).

    [3] D. M. Chow et al. Distributed forward Brillouin sensor based on local light phase recovery. Nat. Commun., 9, 2990(2018).

    [4] C. Pang et al. Opto-mechanical time-domain analysis based on coherent forward stimulated Brillouin scattering probing. Optica, 7, 176-184(2020).

    [5] B. Warf. International competition between satellite and fiber optic carriers: a geographic perspective. Prof. Geogr., 58, 1-11(2006).

    [6] Global_2021_Forecast_Highlights(2016).

    [7] Cisco annual internet report - Cisco annual internet report (2018–2023) white paper(2020).

    [8] J. Cho et al. Shaping lightwaves in time and frequency for optical fiber communication. Nat. Commun., 13, 785(2022).

    [9] A. P. T. Lau et al. Advanced DSP techniques enabling high spectral efficiency and flexible transmissions: toward elastic optical networks. IEEE Signal Process. Mag., 31, 82-92(2014).

    [10] C. E. Shannon. A mathematical theory of communication. Bell Syst. Tech. J., 27, 379-423(1948).

    [11] A. Napoli et al. Towards multiband optical systems, NeTu3E.1(2018).

    [12] R. G. H. Van Uden et al. Ultra-high-density spatial division multiplexing with a few-mode multicore fibre. Nat. Photonics, 8, 865-870(2014).

    [13] M. Cantono et al. Opportunities and challenges of C+L transmission systems. J. Light. Technol., 38, 1050-1060(2020).

    [14] D. Rafique, L. Velasco. Machine learning for network automation: overview, architecture, and applications [Invited tutorial]. J. Opt. Commun. Networking, 10, D126(2018).

    [15] H. Zheng et al. From automation to autonomous: driving the optical network management to fixed fifth-generation (F5G) advanced, 385-389(2023).

    [16] M. P. Yankov, U. C. de Moura, F. D. Ros. Power evolution modeling and optimization of fiber optic communication systems with EDFA repeaters. J. Light. Technol., 39, 3154-3161(2021).

    [17] G. P. Agrawal. Nonlinear Fiber Optics(2001).

    [18] E. Temprana et al. Overcoming Kerr-induced capacity limit in optical fiber transmission. Science, 348, 1445-1448(2015).

    [19] A. R. Chraplyvy. Optical power limits in multi-channel wavelength-division-multiplexed systems due to stimulated Raman scattering. Electron. Lett., 20, 58-59(1984).

    [20] S. Tariq, J. C. Palais. A computer model of non-dispersion-limited stimulated Raman scattering in optical fiber multiple-channel communications. J. Light. Technol., 11, 1914-1924(1993).

    [21] D. Semrau, R. I. Killey, P. Bayvel. The Gaussian noise model in the presence of inter-channel stimulated Raman scattering. J. Light. Technol., 36, 3046-3055(2018).

    [22] H. Buglia et al. An extended version of the ISRS GN model in closed-form accounting for short span lengths and low losses, 1-4(2022).

    [23] A. K. Srivastava et al. EDFA transient response to channel loss in WDM transmission system. IEEE Photonics Technol. Lett., 9, 386-388(1997).

    [24] Y. You, Z. Jiang, C. Janz. Machine learning-based EDFA gain model, 1-3(2018).

    [25] F. da Ros, U. C. de Moura, M. P. Yankov. Machine learning-based EDFA gain model generalizable to multiple physical devices, Tu1A-4(2020).

    [26] J. Yu et al. Machine-learning-based EDFA gain estimation [Invited]. Commun. Networking, 13, B83-B91(2021).

    [27] Z. Jiang, J. Lin, H. Hu. Machine learning based EDFA channel in-band gain ripple modeling, W4I.2(2022).

    [28] B. Pedersen et al. Experimental and theoretical analysis of efficient erbium-doped fiber power amplifiers. IEEE Photonics Technol. Lett., 3, 1085-1087(1991).

    [29] R. Sommer et al. Multiple filter functions integrated into multi-port GFF components, 1-3(2007).

    [30] L. Rapp, M. Eiselt. Optical amplifiers for multi–band optical transmission systems. J. Light. Technol., 40, 1579-1589(2022).

    [31] A. A. M. Saleh et al. Modeling of gain in erbium-doped fiber amplifiers. IEEE Photonics Technol. Lett., 2, 714-717(1990).

    [32] C. R. Giles, E. Desurvire. Modeling erbium-doped fiber amplifiers. J. Lightwave Technol., 9, 271-283(1991).

    [33] M. Hashimoto, M. Yoshida, H. Tanaka. The characteristics of WDM systems with hybrid AGC EDFA in the photonics network, 517-518(2002).

    [34] J. Junio, D. C. Kilper, V. W. S. Chan. Channel power excursions from single-step channel provisioning. J. Opt. Commun. Networking, 4, A1-A7(2012).

    [35] K. Ishii, J. Kurumida, S. Namiki. Experimental investigation of gain offset behavior of feed forward-controlled WDM AGC EDFA under various dynamic wavelength allocations. IEEE Photonics J., 8, 7901713(2016).

    [36] Z. Wang, D. Kilper, T. Chen. Transfer learning-based ROADM EDFA wavelength dependent gain prediction using minimized data collection, 1-3(2023).

    [37] Y. You, Z. Jiang, C. Janz. OSNR prediction using machine learning-based EDFA models, 1-3(2019).

    [38] Y. Liu et al. Modeling EDFA gain: approaches and challenges. Photonics, 8, 417(2021).

    [39] K. Débicki, N. Balakrishnan et al. Gaussian process: overview. Wiley StatsRef: Statistics Reference Online(2014).

    [40] K. Kandasamy, J. Schneider, B. Poczos. Bayesian active learning for posterior estimation, 3605-3611(2015).

    [41] E. Brochu, V. M. Cora, N. de Freitas. A tutorial on Bayesian optimization of expensive cost functions, with application to active user modeling and hierarchical reinforcement learning(2010).

    [42] J. Snoek, H. Larochelle, R. P. Adams. Practical Bayesian optimization of machine learning algorithms, 25(2012).

    [43] P. I. Frazier. A tutorial on Bayesian optimization(2018).

    [44] Z. Zhong et al. BOW: first real-world demonstration of a Bayesian optimization system for wavelength reconfiguration, F3B.1(2021).

    [45] D. Zhan, H. Xing. Expected improvement for expensive optimization: a review. J. Global Optim., 78, 507-544(2020).

    [46] A. Garivier, E. Moulines. On upper-confidence bound policies for switching bandit problems. Lect. Notes Comput. Sci., 6925, 174-188(2011).

    [47] M. P. Yankov, F. Da Ros. Input-output power spectral densities for three C-band EDFAs and four multi-span inline EDFAd fiber optic systems of different lengths(2020).

    [48] Z. Wang, D. C. Kilper, T. Chen. Open EDFA gain spectrum dataset and its applications in data-driven EDFA gain modeling. J. Opt. Commun. Networking, 15, 588(2023).

    [49] S. Zhu et al. Hybrid machine learning EDFA model, T4B.4(2020).

    [50] A. Ferrari et al. GNPy: an open source application for physical layer aware open optical networks. J. Opt. Commun. Networking, 12, C31-C40(2020).

    [51] P. Poggiolini et al. The GN-model of fiber non-linear propagation and its applications. J. Lightwave Technol., 32, 694-721(2014).

    [52] B. Neto et al. Efficient use of hybrid genetic algorithms in the gain optimization of distributed Raman amplifiers. Opt. Express, 15, 17520(2007).

    [53] S. Singh, R. S. Kaler. Performance optimization of EDFA–Raman hybrid optical amplifier using genetic algorithm. Opt. Laser Technol., 68, 89-95(2015).

    [54] J. Chen, H. Jiang. Optimal design of gain-flattened Raman fiber amplifiers using a hybrid approach combining randomized neural networks and differential evolution algorithm. IEEE Photonics J., 10, 7101915(2018).

    [55] J. Zhou et al. Robust, compact, and flexible neural model for a fiber Raman amplifier. J. Lightwave Technol., 24, 2362-2367(2006).

    [56] D. Zibar et al. Inverse system design using machine learning: the Raman amplifier case. J. Lightwave Technol., 38, 736-753(2020).

    [57] X. Ye et al. Experimental prediction and design of ultra-wideband Raman amplifiers using neural networks, W1K.3(2020).

    [58] G. Marcon et al. Model-aware deep learning method for Raman amplification in few-mode fibers. J. Lightwave Technol., 39, 1371-1380(2021).

    [59] M. P. Yankov et al. Flexible Raman amplifier optimization based on machine learning-aided physical stimulated Raman scattering model. J. Lightwave Technol., 41, 508-514(2023).

    [60] M. N. Islam. Raman amplifiers for telecommunications. IEEE J. Sel. Top. Quantum Electron., 8, 548-559(2002).

    [61] C. M. Bishop. Pattern Recognition and Machine Learning, Information Science and Statistics(2006).

    [62] D. P. Kingma, J. Ba. Adam: a method for stochastic optimization(2017).

    [63]

    [64] N. Stander, K. J. Craig. On the robustness of a simple domain reduction scheme for simulation-based optimization. Eng. Comput., 19, 431-450(2002).

    Xiaomin Liu, Yihao Zhang, Yuli Chen, Yichen Liu, Meng Cai, Qizhi Qiu, Mengfan Fu, Lilin Yi, Weisheng Hu, Qunbi Zhuge. Digital twin modeling and controlling of optical power evolution enabling autonomous-driving optical networks: a Bayesian approach[J]. Advanced Photonics, 2024, 6(2): 026006
    Download Citation