• Chinese Optics Letters
  • Vol. 20, Issue 4, 043801 (2022)
Kongyu Lou1、2, Jing Qian1、2, Xiaohan Yu1、3, Zhaoyuan Xia1、2, Danyang Shen1、2, Guande Wang1、2, and Quan-Zhong Zhao1、2、*
Author Affiliations
  • 1State Key Laboratory of High Field Laser Physics and CAS Center for Excellence in Ultra-intense Laser Science, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
  • 2Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
  • 3MOE Key Laboratory of Advanced Micro-Structured Materials, School of Physics Science and Engineering, Tongji University, Shanghai 200092, China
  • show less
    DOI: 10.3788/COL202220.043801 Cite this Article Set citation alerts
    Kongyu Lou, Jing Qian, Xiaohan Yu, Zhaoyuan Xia, Danyang Shen, Guande Wang, Quan-Zhong Zhao. Femtosecond-laser-induced backward transfer of fluorinated ethylene propylene for fabrication of “lotus effect” surfaces[J]. Chinese Optics Letters, 2022, 20(4): 043801 Copy Citation Text show less
    References

    [1] Y. Shao, J. Zhao, Y. Fan, Z. Wan, L. Lu, Z. Zhang, W. Ming, L. Ren. Shape memory superhydrophobic surface with switchable transition between ‘lotus effect’ to ‘rose petal effect,’. Chem. Eng. J., 382, 122989(2020).

    [2] X. Yun, Z. Xiong, Y. He, X. Wang. Superhydrophobic lotus-leaf-like surface made from reduced graphene oxide through soft-lithographic duplication. RSC Adv., 10, 5478(2020).

    [3] S. P. Dalawai, M. A. S. Aly, S. S. Latthe, R. Xing, R. S. Sutar, S. Nagappan, C.-S. Ha, K. K. Sadasivuni, S. Liu. Recent advances in durability of superhydrophobic self-cleaning technology: a critical review. Prog. Org. Coat., 138, 105381(2020).

    [4] Y. Ye, D. Zhang, J. Li, T. Liu, J. Pu, H. Zhao, L. Wang. One-step synthesis of superhydrophobic polyhedral oligomeric silsesquioxane-graphene oxide and its application in anti-corrosion and anti-wear fields. Corros. Sci., 147, 9(2019).

    [5] K. D. Esmeryan, C. E. Castano, T. A. Chaushev, R. Mohammadi, T. G. Vladkova. Silver-doped superhydrophobic carbon soot coatings with enhanced wear resistance and anti-microbial performance. Colloid Surface A., 582, 123880(2019).

    [6] R. Jiang, L. Hao, L. Song, L. Tian, Y. Fan, J. Zhao, C. Liu, W. Ming, L. Ren. Lotus-leaf-inspired non-fouling, mechanical bactericidal surfaces. Chem. Eng. J., 398, 125609(2020).

    [7] L.-C. Jia, G. Zhang, L. Xu, W.-J. Sun, G.-J. Zhong, J. Lei, D.-X. Yan, Z. Li. Robustly superhydrophobic conductive textile for efficient electromagnetic interference shielding. Appl. Mater. Interfaces, 11, 1680(2019).

    [8] X. Wang, Y. Pan, X. Liu, H. Liu, N. Li, C. Liu, D. W. Schubert, C. Shen. Facile fabrication of superhydrophobic and eco-friendly poly (lactic acid) foam for oil-water separation via skin peeling. Appl. Mater. Interfaces, 11, 14362(2019).

    [9] C. Wang, B. Liu, Z. Luo, K. Ding, J. Duan. Fabrication of microholes array on titanium foil by a femtosecond laser and a surface’s wettability switching. Chin. Opt. Lett., 19, 082201(2021).

    [10] R. N. Wenzel. Resistance of solid surfaces to wetting by water. Ind. Eng. Chem. Res., 28, 988(1936).

    [11] A. Cassie, S. Baxter. Wettability of porous surfaces. Trans. Faraday Soc., 40, 546(1944).

    [12] G. Xin, C. Wu, W. Liu, Y. Rong, Y. Huang. Anti-corrosion superhydrophobic surfaces of Al alloy based on micro-protrusion array structure fabricated by laser direct writing. J. Alloy. Compd., 881, 160649(2021).

    [13] C. Cao, B. Yi, J. Zhang, C. Hou, Z. Wang, G. Lu, X. Huang, X. Yao. Sprayable superhydrophobic coating with high processibility and rapid damage-healing nature. Chem. Eng. J., 392, 124834(2020).

    [14] Y. Yang, H. He, Y. Li, J. Qiu. Using nanoimprint lithography to create robust, buoyant, superhydrophobic PVB/SiO2 coatings on wood surfaces inspired by red roses petal. Sci. Rep., 9, 9961(2019).

    [15] F. Adrian, J. Bohandy, B. Kim, A. N. Jette. A study of the mechanism of metal deposition by the laser-induced forward transfer process. J. Vac. Sci. Tech. B, 5, 1490(1987).

    [16] P. Serra, A Piqué. Laser-induced forward transfer: fundamentals and applications. Adv. Mater. Technol., 4, 1800099(2019).

    [17] X. Xu, J. Li, X. Yang, S. Pan, Y. Bi. Introduction of Ag nanoparticles by picosecond lift to improve the photoelectric property of AZO films. Chin. Opt. Lett., 18, 043101(2020).

    [18] J. Li, W. Yu, D. Zheng, X. Zhao, C.-H. Choi, G. Sun. Hot embossing for whole Teflon superhydrophobic surfaces. Coatings, 8, 227(2018).

    [19] B. Parekh, S. Zheng, A. Entenberg, T. Debies, G. A. Takacs. Surface modification of poly(tetrafluoroethylene-co-hexafluoropropylene) with vacuum UV radiation from rotating helium dc arc plasmas. J. Adhes. Sci. Technol., 21, 983(2007).

    [20] N. I. Min’ko, V. M. Nartsev. Factors affecting the strength of the glass. Middle East J. Sci. Res., 18, 1616(2013).

    [21] P. Kongsuwan, G. Satoh, Y. Yao. Transmission welding of glass by femtosecond laser: mechanism and fracture strength. J. Manuf. Sci. Eng., 134, 011004(2012).

    [22] D. Shen, J. Qian, C. Wang, G. Wang, X. Wang, Q. Zhao. Facile preparation of silver nanoparticles in bulk silicate glass by high-repetition-rate picosecond laser pulses. Chin. Opt. Lett., 19, 011901(2021).

    [23] N. Gupta, M. V. Kavya, Y. R. G. Singh, J. Jyothi, H. C. Barshilia. Superhydrophobicity on transparent fluorinated ethylene propylene films with nano-protrusion morphology by Ar + O2 plasma etching: study of the degradation in hydrophobicity after exposure to the environment. J. Appl. Phys., 114, 164307(2013).

    [24] D. Clark, W. Feast, D. Kilcast, W. Musgrave. Applications of ESCA to polymer chemistry. III. Structures and bonding in homopolymers of ethylene and the fluoroethylenes and determination of the compositions of fluoro copolymers. J. Polym. Sci. Pol. Chem., 11, 389(1973).

    [25] M. Ackeret. Polytetrafluoroethylene by XPS. Surf. Sci. Spectra, 1, 100(1992).

    [26] S. Agraharam, D. W. Hess, P. A. Kohl, S. A. Bidstrup Allen. Plasma chemistry in fluorocarbon film deposition from pentafluoroethane/argon mixtures. J. Vac. Sci Technol. A., 17, 3265(1999).

    [27] G. L. Georgiev, R. J. Baird, E. F. McCullen, G. Newaz, G. Auner, R. Patwa, H. Herfurth. Chemical bond formation during laser bonding of Teflon® FEP and titanium. Appl. Surf. Sci., 255, 7078(2009).

    [28] D. Xia, L. M. Johnson, G. P. López. Anisotropic wetting surfaces with one-dimesional and directional structures: fabrication approaches, wetting properties and potential applications. Adv. Mater., 24, 10(2012).

    [29] Z. Cheng, D. Zhang, T. Lv, H. Lai, E. Zhang, H. Kang, Y. Wang, P. Liu, Y. Liu, Y. Du, S. Dou, L. Jiang. Superhydrophobic shape memory polymer arrays with switchable isotropic/anisotropic wetting. Adv. Funct. Mater., 28, 1705002(2018).

    [30] N. Gui, W. Xu, J. Tian, G. Rosengarten, M. Brandt, M. Qian. Fabrication and anisotropic wettability of titanium-coated microgrooves. J. Appl. Phys., 123, 095306(2018).

    Data from CrossRef

    [1] Connie Kong Wai Lee, Yexin Pan, Rongliang Yang, Minseong Kim, Mitch Guijun Li. Laser-Induced Transfer of Functional Materials. Topics in Current Chemistry, 381, 18(2023).

    Kongyu Lou, Jing Qian, Xiaohan Yu, Zhaoyuan Xia, Danyang Shen, Guande Wang, Quan-Zhong Zhao. Femtosecond-laser-induced backward transfer of fluorinated ethylene propylene for fabrication of “lotus effect” surfaces[J]. Chinese Optics Letters, 2022, 20(4): 043801
    Download Citation