• Photonic Sensors
  • Vol. 11, Issue 2, 227 (2021)
Zengling RAN1、*, Xiu HE1, Yunjiang RAO1, Dong SUN1, Xiaojuan QIN1, Debiao ZENG2, Wangwei CHU2, Xiankun LI2, and Yabin WEI2
Author Affiliations
  • 1Fiber Optics Research Center (FORC), Key Laboratory of Optical Fiber Sensing & Communications, University of Electronic Science and Technology of China, Chengdu 611731, China
  • 2Chengdu Aircraft Industrial Group Co., Ltd., Chengdu 610092, China
  • show less
    DOI: 10.1007/s13320-021-0632-7 Cite this Article
    Zengling RAN, Xiu HE, Yunjiang RAO, Dong SUN, Xiaojuan QIN, Debiao ZENG, Wangwei CHU, Xiankun LI, Yabin WEI. Fiber-Optic Microstructure Sensors: A Review[J]. Photonic Sensors, 2021, 11(2): 227 Copy Citation Text show less
    References

    [1] S. Jiang, J. Wang, and Q. Sui, “One novel type of miniaturization FBG rotation angle sensor with high measurement precision and temperature self-compensation,” Photonic Sensors, 2018, 8(1): 88–96.

    [2] C. Y. Lin, G. W. Chern, and L. A. Wang, “Periodical corrugated structure for forming sampled fiber Bragg grating and long-period fiber grating with tunable coupling strength,” Journal of Lightwave Technology, 2001, 19(8): 1212–1221.

    [3] L. Gao, T. Zhu, M. Deng, K. S. Chiang, X. Sun, X. Dong, et al., “Long-period fiber grating within D-shaped fiber using magnetic fluid for magnetic-field detection,” IEEE Photonics Journal, 2012, 4(6): 2095–2104.

    [4] G. Yin, Y. Wang, C. Liao, J. Zhou, X. Zhong, G. Wang, et al., “Long period fiber gratings inscribed by periodically tapering a fiber,” IEEE Photonics Technology Letters, 2014, 26(7): 698–701.

    [5] T. Yang, X. He, Z. Li, Z. Xie, W. Liu, Y. Wang, et al., “Temperature insensitive fiber optic FP sensor for measurement of pressure/strain under high temperature,” in 26th International Conference on Optical Fiber Sensors, Switzerland, September 24–28, 2018, pp. 1–4.

    [6] T. Yang, Z. Ran, X. He, Z. Li, Z. Xie, Y. Wang, et al., “Temperature-compensated multifunctional all-fiber sensors for precise strain/high-pressure measurement,” Journal of Lightwave Technology, 2019, 37(18): 4634–4642.

    [7] M. Wang, M. Yang, J. Cheng, J. Dai, M. Yang, and D. N. Wang, “Femtosecond laser fabricated micro Mach-Zehnder interferometer with Pd film as sensing materials for hydrogen sensing,” Optics Letters, 2012, 37(11): 1940–1942.

    [8] B. Song, H. Zhang, B. Liu, W. Lin, and J. Wu, “Label-free in-situ real-time DNA hybridization kinetics detection employing microfiber-assisted Mach-Zehnder interferometer,” Biosensors and Bioelectronics, 2016, 81: 151–158.

    [9] L. Yuan, J. Yang, Z. Liu, and J. Sun, “In-fiber integrated Michelson interferometer,” Optics Letters, 2006, 31(18): 2692–2694.

    [10] S. M. A. Musa, N. F. Baharin, A. I. Azmi, R. K. R. Ibrahim, A. S. Abdullah, M. Y. M. Noor, et al., “Double-clad fiber Michelson interferometer for measurement of temperature and refractive index,” Microwave and Optical Technology Letters, 2018, 60(4): 822–827.

    [11] J. Ruan, “Fiber curvature sensor based on concave-heterotypic cascaded fiber Sagnac interferometer,” Microwave and Optical Technology Letters, 2020, 62(11): 3645–3649.

    [12] L. Y. Shao, Y. Luo, Z. Zhang, X. Zou, B. Luo, W. Pan, et al., “Sensitivity-enhanced temperature sensor with cascaded fiber optic Sagnac interferometers based on Vernier-effect,” Optics Communications, 2015, 336: 73–76.

    [13] V. R. Machavaram, R. A. Badcock, and G. F. Fernando, “Fabrication of intrinsic fibre Fabry-Perot sensors in silica fibres using hydrofluoric acid etching,” Sensors and Actuators A: Physical, 2007, 138(1): 248–260.

    [14] Z. L. Ran, Y. J. Rao, H. Y. Deng, and X. Liao, “Miniature in-line photonic crystal fiber etalon fabricated by 157 nm laser micromachining,” Optics Letters, 2007, 32(21): 3071–3073.

    [15] Y. J. Rao, M. Deng, D. W. Duan, X. C. Yang, T. Zhu, and G. H. Cheng, “Micro Fabry-Perot interferometers in silica fibers machined by femtosecond laser,” Optics Express, 2007, 15(21): 14123–14128.

    [16] Y. Tan, L. P. Sun, L. Jin, J. Li, and B. O. Guan, “Microfiber Mach-Zehnder interferometer based on long period grating for sensing applications,” Optics Express, 2013, 21(1): 154–164.

    [17] F. Wang, W. Yuan, O. Hansen, and O. Bang, “Selective filling of photonic crystal fibers using focused ion beam milled microchannels,” Optics Express, 2011, 19(18): 17585–17590.

    [18] K. O. Hill, B. Malo, F. Bilodeau, D. C. Johnson, and J. Albert, “Bragg gratings fabricated in monomode photosensitive optical fiber by UV exposure through a phase mask,” Applied Physics Letters, 1993, 62(10): 1035–1037.

    [19] K. Yang, J. He, C. Liao, Y. Wang, S. Liu, K. Guo, et al., “Femtosecond laser inscription of fiber Bragg grating in twin-core few-mode fiber for directional bend sensing,” Journal of Lightwave Technology, 2017, 35(21): 4670–4676.

    [20] Y. J. Rao, Y. P. Wang, Z. L. Ran, and T. Zhu, “Novel fiber-optic sensors based on long-period fiber gratings written by high-frequency CO2 laser pulses,” Journal of Lightwave Technology, 2003, 21(5): 1320.

    [21] M. Fujimaki, Y. Ohki, J. L. Brebner, and S. Roorda, “Fabrication of long-period optical fiber gratings by use of ion implantation,” Optics Letters, 2000, 25(2): 88–89.

    [22] L. Wang, W. Zhang, L. Chen, Z. Bai, F. Liu, and T. Yan, “Torsion sensor based on two cascaded long period fiber gratings fabricated by CO2 laser pulse irradiation and HF etching technique respectively,” Journal of Modern Optics, 2017, 64(5): 541–545.

    [23] R. Q. Lv, Q. Wang, H. F. Hu, and J. Li, “Fabrication and sensing characterization of thermally induced long period fiber gratings in few mode fibers,” Optik (Stuttg), 2018, 158: 71–77.

    [24] A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, et al., “Fiber grating sensors,” Journal of Lightwave Technology, 1997, 15(8): 1442–1463.

    [25] D. Barrera, J. Madrigal, and S. Sales, “Tilted fiber Bragg gratings in multicore optical fibers for optical sensing,” Optics Letters, 2017, 42(7): 1460–1463.

    [26] T. Osuch, K. Markowski, A. Manuj-o, and K. J-drzejewski, “Coupling independent fiber optic tilt and temperature sensor based on chirped tapered fiber Bragg grating in double-pass configuration,” Sensors and Actuators A: Physical, 2016, 252: 76–81.

    [27] T. Osuch, K. Markowski, and K. Jedrzejewski, “Fiber-optic strain sensors based on linearly chirped tapered fiber Bragg gratings with tailored intrinsic chirp,” IEEE Sensors Journal, 2016, 16(20): 7508–7514.

    [28] X. Li, Y. Zhang, W. Zhang, and T. Yan, “High-sensitivity temperature-independent force sensor based on PS-LPFG formed by inserting a microbend,” Journal of Optics, 2017, 19(3): 035801.

    [29] H. L. Zhang, W. G. Zhang, L. Chen, Z. D. Xie, Z. Zhang, T. Y. Yan, et al., “Bidirectional torsion sensor based on a pair of helical long-period fiber gratings,” IEEE Photonics Technology Letters, 2016, 28(15): 1700–1702.

    [30] J. K. Sahota, N. Gupta, and D. Dhawan, “Fiber Bragg grating sensors for monitoring of physical parameters: a comprehensive review,” Optical Engineering, 2020, 59(6): 060901.

    [31] J. Echevarria, A. Quintela, C. Jauregui, A. Cobo, and J. M. Lopez-Higuera, “Efficient temperature and strain discimination with a single type I fiber Bragg grating transducer,” in 13th Annual Meeting. IEEE Lasers and Electro-Optics Society 2000 Annual Meeting, USA, Nov. 13–16, 2000, pp. 458–459.

    [32] S. Bandyopadhyay, J. Canning, M. Stevenson, and K. Cook, “Ultrahigh-temperature regenerated gratings in boron-codoped germanosilicate optical fiber using 193 nm,” Optics Letters, 2008, 33(16): 1917–1919.

    [33] M. Celikin, D. Barba, B. Bastola, A. Ruediger, and F. Rosei, “Development of regenerated fiber Bragg grating sensors with long-term stability,” Optics Express, 2016, 24(19): 21897–21909.

    [34] J. Li, W. Zhang, S. Gao, Z. Bai, L. Wang, H. Liang, et al., “Simultaneous force and temperature measurement using S fiber taper in fiber Bragg grating,” IEEE Photonics Technology Letters, 2013, 26(3): 309–312.

    [35] J. Kong, X. Ouyang, A. Zhou, H. Yu, and L. Yuan, “Pure directional bending measurement with a fiber Bragg grating at the connection joint of eccentric-core and single-mode fibers,” Journal of Lightwave Technology, 2016, 34(14): 3288–3292.

    [36] A. G. Simpson, K. Kalli, L. Zhang, K. Zhou, and I. Bennion, “Type 1A fibre Bragg grating photosensitivity and the development of optimum temperature invariant type I-type IA strain sensors,” in Photonics Europe, France, 2004, pp. 5459.

    [37] C. W. Smelser, S. J. Mihailov, and D. Grobnic, “Formation of Type I-IR and Type II-IR gratings with an ultrafast IR laser and a phase mask,” Optics Express, 2005, 13(14): 5377–5386.

    [38] X. Shu, D. Zhao, Y. Liu, B. Gwandu, F. Floreani, and L. Zhang, “Effectively simultaneous temperature and strain type IA and type IIA FBGs,” in Sensors, Proceedings of IEEE, 2002, pp. 2–45.

    [39] H. Z. Yang, M. M. Ali, M. R. Islam, K. S. Lim, D. S. Gunawardena, and H. Ahmad, “Cladless few mode fiber grating sensor for simultaneous refractive index and temperature measurement,” Sensors and Actuators A: Physical, 2015, 228: 62–68.

    [40] Y. Zhang, W. Zhang, Y. Zhang, S. Wang, L. Yu, and Y. Yan, “Simultaneous measurement of curvature and temperature based on LP11 mode Bragg grating in seven-core fiber,” Measurement Science and Technology, 2017, 28(5): 055101.

    [41] D. Barrera, I. Gasulla, and S. Sales, “Multipoint two-dimensional curvature optical fiber sensor based on a nontwisted homogeneous four-core fiber,” Journal of Lightwave Technology, 2015, 33(12): 2445–2450.

    [42] C. Wang, J. He, J. Zhang, C. Liao, Y. Wang, W. Jin, et al., “Bragg gratings inscribed in selectively inflated photonic crystal fibers,” Optics Express, 2017, 25(23): 28442–28450.

    [43] X. Zhang and W. Peng, “Fiber Bragg grating inscribed in dual-core photonic crystal fiber,” IEEE Photonics Technology Letters, 2015, 27(4): 391–394.

    [44] Z. Wu, H. Zhang, P. P. Shum, X. Shao, T. Huang, Y. M. Seow, et al., “Supermode Bragg grating combined Mach-Zehnder interferometer for temperature-strain discrimination,” Optics Express, 2015, 23(26): 33001–33007.

    [45] B. Jiang, Z. Bai, C. Wang, Y. Zhao, J. Zhao, L. Zhang, et al., “In-line Mach-Zehnder interferometer with D-shaped fiber grating for temperaturediscriminated directional curvature measurement,” Journal of Lightwave Technology, 2018, 36(3): 742–747.

    [46] B. C. Yao, Y. Wu, D. J. Webb, J. H. Zhou, Y. J. Rao, A. Pospori, et al., “Graphene-based D-shaped polymer FBG for highly sensitive erythrocyte detection,” IEEE Photonics Technology Letters, 2015, 27(22): 2399–2402.

    [47] D. Grobnic, S. J. Mihailov, C. W. Smelser, and H. Ding, “Sapphire fiber Bragg grating sensor made using femtosecond laser radiation for ultrahigh temperature applications,” IEEE Photonics Technology Letters, 2004, 16(11): 2505–2507.

    [48] D. Grobnic, S. J. Mihailov, H. Ding, F. Bilodeau, and C. W. Smelser, “Single and low order mode interrogation of a multimode sapphire fiber Bragg grating sensor with tapered fibers,” Measurement Science and Technology, 2006, 17(5): 980.

    [49] C. Zhan, J. H. Kim, J. Lee, S. Yin, P. Ruffin, and C. Luo, “High temperature sensing using higher-order-mode rejected sapphire-crystal fiber gratings,” in Optical Engineering + Applications, San Diego, 2007, pp. 66980F.

    [50] K. Kalli, T. Geernaert, C. Koutsides, M. Komodromos, T. Nasilowski, W. Urbanczyk, et al., “Point-by-point Bragg grating inscription in single-mode microstructure fibre using NIR femtosecond laser,” in 20th International Conference on Optical Fibre Sensors, United Kingdom, 2009, pp. 75037O.

    [51] S. Yang, D. Hu, and A. Wang, “Point-by-point fabrication and characterization of sapphire fiber Bragg gratings,” Optics Letters, 2017, 42(20): 4219–4222.

    [52] X. Xu, J. He, C. Liao, K. Yang, K. Guo, C. Li, et al., “Sapphire fiber Bragg gratings inscribed with a femtosecond laser line-by-line scanning technique,” Optics Letters, 2018, 43(19): 4562–4565.

    [53] Z. Bai, W. Zhang, S. Gao, P. Geng, H. Zhang, J. Li, et al., “Compact long period fiber grating based on periodic micro-core-offset,” IEEE Photonics Technology Letters, 2013, 25(21): 2111–2114.

    [54] T. Zhu, Y. Song, Y. Rao, and Y. Zhu, “Highly sensitive optical refractometer based on edge-written ultra-long-period fiber grating formed by periodic grooves,” IEEE Sensors Journal, 2009, 9(6): 678–681.

    [55] Y. P. Li, L. Chen, Y. X. Zhang, W. G. Zhang, S. Wang, Y. S. Zhang, et al., “Realizing torsion detection using berry phase in an angle-chirped long-period fiber grating,” Optics Express, 2017, 25(12): 13448–13454.

    [56] Y. P. Li et al., “Realizing torsion detection using berry phase in an angle-chirped long-period fiber grating,” Opt. Express, vol. 25, no. 12, pp. 13448, 2017.

    [57] R. B. Shang, W. G. Zhang, W. B. Zhu, P. C. Geng, J. Ruan, S. C. Gao, et al., “Fabrication of twisted long period fiber gratings with high frequency CO2 laser pulses and its bend sensing,” Journal of Optics (United Kingdom), 2013, 15(7): 075402.

    [58] S. Oh, K. R. Lee, U. C. Paek, and Y. Chung, “Fabrication of helical long-period fiber gratings by use of a CO2 laser,” Optics Letters, 2004, 29(13): 1464–1466.

    [59] Y. P. Wang and Y. J. Rao, “A novel long period fiber grating sensors measuring bend-curvature and determining bend-direction simultaneously,” IEEE Sensors Journal, 2005, 5(5): 839–843.

    [60] P. Geng, W. Zhang, S. Gao, H. Zhang, J. Li, S. Zhang, et al., “Two-dimensional bending vector sensing based on spatial cascaded orthogonal long period fiber,” Optics Express, 2012, 20(27): 28557–28562.

    [61] J. Li, W. Zhang, S. Gao, P. Geng, X. Xue, Z. Bai, et al., “Long-period fiber grating cascaded to an S fiber taper for simultaneous measurement of temperature and refractive index,” IEEE Photonics Technology Letters, 2013, 25(9): 888–891.

    [62] T. Habisreuther, T. Elsmann, Z. Pan, A. Graf, R. Willsch, and M. A. Schmidt, “Sapphire fiber Bragg gratings for high temperature and dynamic temperature diagnostics,” Applied Thermal Engineering, 2015, 91: 860–865.

    [63] S. Yang, D. Homa, G. Pickrell, and A. Wang, “Fiber Bragg grating fabricated in micro-single-crystal sapphire fiber,” Optics Letters, 2018, 43(1): 62–65.

    [64] F. Ahmed and M. B. G. Jun, “Microfiber Bragg grating sandwiched between standard optical fibers for enhanced temperature sensing,” IEEE Photonics Technology Letters, 2016, 28(6): 685–688.

    [65] C. Liao, Q. Wang, L. Xu, S. Liu, J. He, J. Zhao, et al., “D-shaped fiber grating refractive index sensor induced by an ultrashort pulse laser,” Applied Optics, 2016, 55(7): 1525–1529.

    [66] Z. Cai, F. Liu, T. Guo, B. O. Guan, G. D. Peng, and J. Albert, “Evanescently coupled optical fiber refractometer based a tilted fiber Bragg grating and a D-shaped fiber,” Optics Express, 2015, 23(16): 20971–20976.

    [67] T. Wang, K. Liu, J. Jiang, M. Xue, P. Chang, and T. Liu, “Temperature-insensitive refractive index sensor based on tilted moiré FBG with high resolution,” Optics Express, 2017, 25(13): 14900–14909.

    [68] X. Chen, J. Xu, X. Zhang, T. Guo, and B. O. Guan, “Wide range refractive index measurement using a multi-angle tilted fiber Bragg grating,” IEEE Photonics Technology Letters, 2017, 29(9): 719–722.

    [69] S. Korganbayev, Y. Orazayev, S. Sovetov, A. Bazyl, E. Schena, C. Massaroni, et al., “Detection of thermal gradients through fiber-optic chirped fiber Bragg grating (CFBG): medical thermal ablation scenario,” Optical Fiber Technology, 2018, 41: 48–55.

    [70] X. Qiao, Y. Wang, H. Yang, T. Guo, Q. Rong, L. Li, et al., “Ultrahigh-temperature chirped fiber Bragg grating through thermal activation,” IEEE Photonics Technology Letters, 2015, 27(12): 1305–1308.

    [71] J. Guo and C. Yang, “Highly stabilized phase-shifted fiber Bragg grating sensing system for ultrasonic detection,” IEEE Photonics Technology Letters, 2015, 27(8): 848–851.

    [72] D. Gatti, G. Galzerano, D. Janner, S. Longhi, and P. Laporta, “Fiber strain sensor based on a π-phase-shifted Bragg grating and the Pound-Drever-Hall technique,” Optics Express, 2008, 16(3): 1945–1950.

    [73] B. Wang, W. Zhang, Z. Bai, L. Wang, L. Zhang, Q. Zhou, et al., “CO2-laser-induced long period fiber gratings in few mode fibers,” IEEE Photonics Technology Letters, 2014, 27(2): 145–148.

    [74] L. Wang, W. Zhang, B. Wang, L. Chen, Z. Bai, S. Gao, et al., “Simultaneous strain and temperature measurement by cascading few-mode fiber and single-mode fiber long-period fiber gratings,” Applied Optics, 2014, 53(30): 7045–7049.

    [75] D. Barrera, J. Madrigal, and S. Sales, “Long period gratings in multicore optical fibers for directional curvature sensor implementation,” Journal of Lightwave Technology, 2018, 36(4): 1063–1068.

    [76] X. Shen, X. Hu, L. Yang, N. Dai, J. Wu, F. Zhang, et al., “Helical long-period grating manufactured with a CO2 laser on multicore fiber,” Optics Express, 2017, 25(9): 10405–10412.

    [77] N. Zhang, G. Humbert, Z. Wu, K. Li, P. P. Shum, N. M. Y. Zhang, et al., “In-line optofluidic refractive index sensing in a side-channel photonic crystal fiber,” Optics Express, 2016, 24(24): 27674–27682.

    [78] C. Du, Q. Wang, Y. Zhao, and J. Li, “Highly sensitive temperature sensor based on an isopropanol-filled photonic crystal fiber long period grating,” Optical Fiber Technology, 2017, 34: 12–15.

    [79] Z. He, Y. Zhu, and H. Du, “Long-period gratings inscribed in air- and water-filled photonic crystal fiber for refractometric sensing of aqueous solution,” Applied Physics Letters, 2008, 92(4): 044105.

    [80] S. M. Tripathi, E. Marin, A. Kumar, and J. P. Meunier, “Refractive index sensing characteristics of dual resonance long period gratings in bare and metal-coated D-shaped fibers,” Applied Optics, 2009, 48(31): G53–G58.

    [81] G. Quero, A. Crescitelli, D. Paladino, M. Consalesa, A.Buosciolo, M.Giordano, et al., “Evanescent wave long-period fiber grating within D-shaped optical fibers for high sensitivity refractive index detection,” Sensors and Actuators B: Chemical, 2011, 152(2): 196–205.

    [82] C. E. Lee, R. A. Atkins, and H. F. Taylor, “Performance of a fiber-optic temperature sensor from -200 to 1 050 ℃,” Optics Letters, 1988, 13(11): 1038–1040.

    [83] J. Mathew, O. Schneller, D. Polyzos, D. Havermann, R. M. Carter, W. N. MacPherson, et al., “In-fiber Fabry-Perot cavity sensor for high-temperature applications,” Journal of Lightwave Technology, 2015, 33(12): 2419–2425.

    [84] Y. P. Wang, L. Xiao, D. N. Wang, and W. Jin, “Highly sensitive long-period fiber-grating strain sensor with low temperature sensitivity,” Optics Letters, 2006, 31(23): 3414–3416.

    [85] Y. P. Wang, D. N. Wang, and W. Jin, “CO2 laser-grooved long period fiber grating temperature sensor system based on the intensity modulation,” Applied Optics, 2006, 45(31): 7966–7970.

    [86] T. Zhu, Y. J. Rao, Y. Song, K. S. Chiang, and M. Liu, “Highly sensitive temperature-independent strain sensor based on a long-period fiber grating with a CO2-laser engraved rotary structure,” IEEE Photonics Technology Letters, 2009, 21(8): 543–545.

    [87] T. Yuan, X. Zhong, C. Guan, J. Fu, J. Yang, J. Shi, et al., “Long period fiber grating in two-core hollow eccentric fiber,” Optics Express, 2015, 23(26): 33378–33385.

    [88] X. Jin, C. Sun, S. Duan, W. Liu, G. Li, S. Zhang, et al., “High strain sensitivity temperature sensor based on a secondary modulated tapered long period fiber grating,” IEEE Photonics Journal, 2019, 11(1): 1–8.

    [89] W. J. Bock, J. Chen, P. Mikulic, and T. Eftimov, “A novel fiber-optic tapered long-period grating sensor for pressure monitoring,” IEEE Transactions on Instrumentation and Measurement, 2007, 56(4): 1176–1180.

    [90] W. J. Bock, J. Chen, P. Mikulic, T. Eftimov, and M. Korwin-Pawlowski, “Pressure sensing using periodically tapered long-period gratings written in photonic crystal fibres,” Measurement Science and Technology, 2007, 18(10): 3098.

    [91] H. Hu, C. Du, Q. Wang, X. Wang, and Y. Zhao, “High sensitivity internal refractive index sensor based on a photonic crystal fiber long period grating,” Instrumentation Science & Technology, 2017, 45(2): 181–189.

    [92] J. Tang, G. Yin, S. Liu, X. Zhong, C. Liao, Z. Li, et al., “Gas pressure sensor based on CO2-laser-induced long-period fiber grating in air-core photonic bandgap fiber,” IEEE Photonics Journal, 2015, 7(5): 1–7.

    [93] M. Yang, D. N. Wang, Y. Wang, and C. Liao, “Long period fiber grating formed by periodically structured microholes in all-solid photonic bandgap fiber,” Optics Express, 2010, 18(3): 2183–2189.

    [94] J. C. Guo, Y. S. Yu, Y. Xue, C. Chen, R. Yang, C. Wang, et al., “Compact long-period fiber gratings based on periodic microchannels,” IEEE Photonics Technology Letters, 2012, 25(2): 111–114.

    [95] B. Sun, W. Wei, C. Liao, L. Zhang, Z. Zhang, M. Y. Chen, et al., “Automatic arc discharge-induced helical long period fiber gratings and its sensing applications,” IEEE Photonics Technology Letters, 2017, 29(11): 873–876.

    [96] Z. Li, S. Liu, Z. Bai, C. Fu, Y. Zhang, Z. Sun, et al., “Residual-stress-induced helical long period fiber gratings for sensing applications,” Optics Express, 2018, 26(18): 24114–24123.

    [97] H. Zhang, Z. Wu, P. P. Shum, X. Q. Dinh, C. W. Low, Z. Xu, et al., “Highly sensitive strain sensor based on helical structure combined with Mach-Zehnder interferometer in multicore fiber,” Scientific Reports, 2017, 7(1): 1–10.

    [98] X. Zhong, Y. Wang, J. Qu, C. Liao, S. Liu, J. Tang, et al., “High-sensitivity strain sensor based on inflated long period fiber grating,” Optics Letters, 2014, 39(18): 5463–5466.

    [99] X. Zhong, Y. Wang, C. Liao, S. Liu, J. Tang, and Q. Wang, “Temperature-intensitivity gas pressure sensor based on inflated long period fiber grating inscribed in photonic crystal fiber,” Optics Letters, 2015, 40(8): 1791–1794.

    [100] ] Y. F. Zhang, C. C. Chan, Y. M. Chan, and P. Zu, “Tilted long period gratings pressure sensing in solid core photonic crystal fibers,” IEEE Sensors Journal, 2011, 12(5): 954–957.

    [101] ] J. Tang, C. Fu, Z. Bai, C. Liao, and Y. Wang, “Sensing characteristics of tilted long period fiber gratings inscribed by infrared femtosecond laser,” Sensors (Switzerland), 2018, 18(9): 3003.

    [102] ] P. Wang, L. Xian, and H. Li, “Fabrication of phase-shifted long-period fiber grating and its application to strain measurement,” IEEE Photonics Technology Letters, 2014, 27(5): 557–560.

    [103] ] S. Niu, Y. Liao, Q. Yao, and Y. Hu, “Resolution and sensitivity enhancements in strong grating based fiber Fabry-Perot interferometric sensor system utilizing multiple reflection beams,” Optics Communications, 2012, 285(12): 2826–2831.

    [104] ] X. Chen, F. Shen, Z. Wang, Z. Huang, and A. Wang, “Micro-air-gap based intrinsic Fabry-Perot interferometer fiber-optic sensor,” Applied Optics, 2006, 45(30): 7760–7766.

    [105] ] Z. Huang, Y. Zhu, X. Chen, and A. Wang, “Intrinsic Fabry-Pérot fiber sensor for temperature and strain measurements,” IEEE Photonics Technology Letters, 2005, 17(11): 2403–2405.

    [106] ] P. C. Fiber, “A miniature Fabry-Pérot interferometer for high temperature measurement using a double-core photonic crystal fiber,” IEEE Sensors Journal, 2013, 14(4): 1069–1073.

    [107] ] P. Chen, X. Shu, and H. Cao, “Novel compact and low-cost ultraweak Fabry-Perot interferometer as a highly sensitive refractive index sensor,” IEEE Photonics Journal, 2017, 9(5): 1–10.

    [108] ] A. Wang, S. Gollapudi, K. A. Murphy, R. G. May, and R. Claus, “Sapphire-fiber-based intrinsic Fabry-Perot interferometer,” Optics Letters, 1992, 17(14): 1021–1023.

    [109] ] C. L. Lee, J. M. Hsu, J. S. Horng, W. Y. Sung, and C. M. Li, “Microcavity fiber Fabry-Pérot interferometer with an embedded golden thin film,” IEEE Photonics Technology Letters, 2013, 25(9): 833–836.

    [110] ] S. H. Aref, H. Latifi, M. I. Zibaii, and M. Afshari, “Fiber optic Fabry-Perot pressure sensor with low sensitivity to temperature changes for downhole application,” Optics Communications, 2007, 269(2): 322–330.

    [111] ] Y. Jiang and C. Tang, “High-finesse micro-lens fiber-optic extrinsic Fabry-Perot interferometric sensors,” Smart Materials and Structures, 2008, 17(5): 055013.

    [112] ] O. Fraz-o, J. M. Baptista, J. L. Santos, J. Kobelke, and K. Schuster, “Refractive index tip sensor based on Fabry-Perot cavities formed by a suspended core fibre,” Journal of the European Optical Society-Rapid publications, 2009, 4: 28–31.

    [113] ] Y. J. Rao, M. Deng, D. W. Duan, and T. Zhu, “In-line fiber Fabry-Perot refractive-index tip sensor based on endlessly photonic crystal fiber,” Sensors and Actuators A: Physical, 2008, 148(1): 33–38.

    [114] ] H. Y. Choi, K. S. Park, S. J. Park, U. C. Paek, B. H. Lee, and E. S. Choi, “Miniature fiber-optic high temperature sensor based on a hybrid structured Fabry-Perot interferometer,” Optics Letters, 2008, 33(21): 2455–2457.

    [115] ] S. Silva, L. Coelho, and O. Fraz-o, “An all-fiber Fabry-Pérot interferometer for pressure sensing in different gaseous environments,” Measurement, 2014, 47: 418–421.

    [116] ] D. Donlagic and E. Cibula, “All-fiber highsensitivity pressure sensor with SiO2 diaphragm,” Optics Letters, 2005, 30(16): 2071–2073.

    [117] ] F. Interferometer, W. Wang, Q. Yu, F. Li, X. Zhou, and X. Jiang, “Temperature-insensitive pressure sensor based on all-fused-silica extrinsic Fabry-Pérot optical,” IEEE Sensors Journal, 2012, 12(7): 2425–2429.

    [118] ] M. J. Gander, W. N. MacPherson, J. S. Barton, R. L. Reuben, J. D. C. Jones, R. Stevens, et al., “Embedded micromachined fiber-optic Fabry-Perot pressure sensors in aerodynamics applications,” IEEE Sensors Journal, 2003, 3(1): 102–107.

    [119] ] H. Bae and M. Yu, “Miniature Fabry-Perot pressure sensor created by using UV-molding process with an optical fiber based mold,” Optics Express, 2012, 20(13): 14573–14583.

    [120] ] L. H. Chen, X. M. Ang, C. C. Chan, M. Shaillender, B. Neu, W. C. Wong, et al., “Layer-by-layer (chitosan/ polystyrene sulfonate) membrane-based fabry-perot interferometric fiber optic biosensor,” IEEE Journal of Selected Topics in Quantum Electronics, 2012, 18(4): 1457–1464.

    [121] ] J. Ma, H. Xuan, H. L. Ho, W. Jin, Y. Yang, and S. Fan, “Fiber-optic Fabry-Pérot acoustic sensor with multilayer graphene diaphragm,” IEEE Photonics Technology Letters, 2013, 25(10): 932–935.

    [122] ] F. J. Arregui, K. L. Cooper, Y. Liu, I. R. Matias, and R. O. Claus, “Optical fiber humidity sensor with a fast response time using the ionic self-assembly method,” IEICE Transactions on Electronics, 2000, 83(3): 360–365.

    [123] ] B. T. Cox, E. Z. Zhang, J. G. Laufer, and P. C. Beard, “Fabry Perot polymer film fibre-optic hydrophones and arrays for ultrasound field characterisation,” Journal of Physics: Conference Series, 2004, 1: 32–37.

    [124] ] T. Wei, Y. Han, Y. Li, H. L. Tsai, and H. Xiao, “Temperature-insensitive miniatureized fiber inline Fabry-Perot interferometer for highly sensitive refractive index measurement,” Optics Express, 2008, 16(8): 5764–5769.

    [125] ] Y. Gong, Y. J. Rao, Y. Guo, Z. L. Ran, and Y. Wu, “Temperature-insensitive micro Fabry-Pérot strain sensor fabricated by chemically etching Er-doped fiber,” IEEE Photonics Technology Letters, 2009, 21(22): 1725–1727.

    [126] ] Z. L. Ran, Y. J. Rao, W. J. Liu, X. Liao, and K. S. Chiang, “Laser-micromachined Fabry-Perot optical fiber tip sensor for high-resolution temperatureindependent measurement of refractive index,” Optics Express, 2008, 16(3): 2252–2263.

    [127] ] Z. Ran, Z. Liu, Y. Rao, F. Xu, D. Sun, X. Yu, et al., “Miniature fiber-optic tip high pressure sensors micromachined by 157 nm laser,” IEEE Sensors Journal, 2011, 11(5): 1103–1106.

    [128] ] Z. L. Ran, Y. J. Rao, H. Y. Deng, and X. Liao, “Miniature in-line photonic crystal fiber etalon fabricated by 157 nm laser micromachining,” Optics Letters, 2007, 32(21): 3071–3073.

    [129] ] X. Wan and H. F. Taylor, “Intrinsic fiber Fabry-Perot temperature sensor with fiber Bragg grating mirrors,” Optics Letters, 2002, 27(16): 1388–1390.

    [130] ] Y. J. Rao, M. R. Cooper, D. A. Jackson, C. N. Pannell, and L. Reekie, “Absolute strain measurement using an in-fiber-Bragg-grating-based Fabry-Perot sensor,” Electronics Letters, 2000, 36(8): 708–709.

    [131] ] Y. J. Rao, M. Deng, D. W. Duan, and T. Zhu, “In-line fiber Fabry-Perot refractive-index tip sensor based on endlessly photonic crystal fiber,” Sensors and Actuators A: Physical, 2008, 148(1): 33–38.

    [132] ] J. J. Zhu, A. P. Zhang, T. H. Xia, S. He, and W. Xue, “Fiber-optic high-temperature sensor based on thin-core fiber modal interferometer,” IEEE Sensors Journal, 2010, 10(9): 1415–1418.

    [133] ] Q. Zhao, H. Li, J. Lv, X. Liu, F. Zhang, S. Jiang, et al., “Adhesive-free bonding fiber optic Fabry-Perot pressure sensor based on oxy-hydrogen flame welding and spiral tube,” Optics Communications, 2020, 476: 126307.

    [134] ] F. Guo, T. Fink, M. Han, L. Koester, J. Turner, and J. Huang, “High-sensitivity, high-frequency extrinsic Fabry-Perot interferometric fiber-tip sensor based on a thin silver diaphragm,” Optics Letters, 2012, 37(9): 1505–1507.

    [135] ] J. Ma, W. Jin, H. L. Ho, and J. Y. Dai, “High-sensitivity fiber-tip pressure sensor with graphene diaphragm,” Optics Letters, 2012, 37(13): 2493–2495.

    [136] ] J. Xu, G. Pickrell, X. Wang, W. Peng, K. Cooper, and A. Wang, “A novel temperature-insensitive optical fiber pressure sensor for harsh environments,” IEEE Photonics Technology Letters, 2005, 17(4): 870–872.

    [137] ] S. Liu, K. Yang, Y. Wang, J. Qu, C. Liao, J. He, et al., “High-sensitivity strain sensor based on in-fiber rectangular air bubble,” Scientific Reports, 2015, 5(1): 1–7.

    [138] ] S. Pevec and D. Donlagic, “All-fiber, long-activelength Fabry-Perot strain sensor,” Optics Express, 2011, 19(16): 15641–15651.

    [139] ] J. F. Ding, A. P. Zhang, L. Y. Shao, J. H. Yan, and S. He, “Fiber-taper seeded long-period grating pair as a highly sensitive refractive-index sensor,” IEEE Photonics Technology Letters, 2005, 17(6): 1247–1249.

    [140] ] J. H. Lim, H. S. Jang, K. S. Lee, J. C. Kim, and B. H. Lee, “Mach-Zehnder interferometer formed in a photonic crystal fiber based on a pair of long-period fiber gratings,” Optics Letters, 2004, 29(4): 346–348.

    [141] ] H. Y. Choi, M. J. Kim, and B. H. Lee, “Compact all-fiber Mach-Zehnder interferometers formed in photonic crystal fiber,” Optics Express, 2007, 15(9): 5711–5720.

    [142] ] L. V. Nguyen, D. Hwang, S. Moon, D. S. Moon, and Y. Chung, “High temperature fiber sensor with high sensitivity based on core diameter mismatch,” Optics Express, 2008, 16(15): 11369–11375.

    [143] ] L. Men, P. Lu, and Q. Chen, “Femtosecond laser trimmed fiber taper for simultaneous measurement of axial strain and temperature,” IEEE Photonics Technology Letters, 2011, 23(5): 320–322.

    [144] ] L. Zhao, L. Jiang, S. Wang, H. Xiao, Y. Lu, and H. L. Tsai, “A high-quality Mach-Zehnder interferometer fiber sensor by femtosecond laser one-step processing,” Sensors, 2011, 11(1): 54–61.

    [145] ] H. Gong, D. N. Wang, B. Xu, K. Ni, H. Liu, and C. L. Zhao, “Miniature and robust optical fiber in-line Mach-Zehnder interferometer based on a hollow ellipsoid,” Optics Letters, 2015, 40(15): 3516–3519.

    [146] ] Z. Li, C. Liao, D. Chen, J. Song, W. Jin, G. D. Peng, et al., “Label-free detection of bovine serum albumin based on an in-fiber Mach-Zehnder interf

    Zengling RAN, Xiu HE, Yunjiang RAO, Dong SUN, Xiaojuan QIN, Debiao ZENG, Wangwei CHU, Xiankun LI, Yabin WEI. Fiber-Optic Microstructure Sensors: A Review[J]. Photonic Sensors, 2021, 11(2): 227
    Download Citation