• Journal of Innovative Optical Health Sciences
  • Vol. 12, Issue 3, 1930001 (2019)
Xiaoju Men and Zhen Yuan*
Author Affiliations
  • Cancer Center, Faculty of Health Sciences, University of Macau, Macau SAR 999708, P. R. China
  • show less
    DOI: 10.1142/s1793545819300015 Cite this Article
    Xiaoju Men, Zhen Yuan. Multifunctional conjugated polymer nanoparticles for photoacoustic-based multimodal imaging and cancer photothermal therapy[J]. Journal of Innovative Optical Health Sciences, 2019, 12(3): 1930001 Copy Citation Text show less
    References

    [1] Y. Y. Wu, H. F. Ruan, R. Zhao, Z. Z. Dong, W. H. Li, X. J. Tang, J. H. Yuan, X. H. Fang, “Ultrastable fluorescent polymer dots for stimulated emission depletion bioimaging," Adv. Opt. Mater. 6, 1800333 (2018).

    [2] M. Nurunnabi, Z. Khatun, G. R. Reeck, D. Y. Lee, Y. K. Lee, “Near infra-red photoluminescent graphene nanoparticles greatly expand their use in noninvasive biomedical imaging," Chem. Commun. 49, 5079–5081 (2013).

    [3] M. E. Tanenbaum, L. A. Gilbert, L. S. Qi, J. S. Weissman, R. D. Vale, “A protein-tagging system for signal amplification in gene expression and fluorescence imaging," Cell 159, 635–646 (2014).

    [4] J. Panes, R. Bouzas, M. Chaparro, V. Garcia- Sanchez, J. P. Gisbert, B. M. de Guerenu, J. L. Mendoza, J. M. Paredes, S. Quiroga, T. Ripolles, J. Rimola, “Systematic review: The use of ultrasonography, computed tomography and magnetic resonance imaging for the diagnosis, assessment of activity and abdominal complications of Crohn's disease," Aliment. Pharmacol. Ther. 34, 125–145 (2011).

    [5] M. Infante, S. Cavuto, F. R. Lutman, E. Passera, M. Chiarenza, G. Chiesa, G. Brambilla, E. Angeli, G. Aranzulla, A. Chiti, M. Scorsetti, P. Navarria, R. Cavina, M. Ciccarelli, M. Roncalli, A. Destro, E. Bottoni, E. Voulaz, V. Errico, G. Ferraroli, G. Finocchiaro, L. Toschi, A. Santoro, M. Alloisio, D. S. Grp, “Long-term follow-up results of the dante trial, a randomized study of lung cancer screening with spiral computed tomography," Am. J. Respir. Crit. Care Med. 191, 1166–1175 (2015).

    [6] N. Tahara, J. Mukherjee, H. J. de Haas, A. D. Petrov, A. Tawakol, N. Haider, A. Tahara, C. C. Constantinescu, J. Zhou, H. H. Boersma, T. Imaizumi, M. Nakano, A. Finn, Z. Fayad, R. Virmani, V. Fuster, L. Bosca, J. Narula, “2-deoxy-2[F-18]-fluoro-D-mannose positron emission tomography imaging in atherosclerosis," Nat. Med. 20, 215–219 (2014).

    [7] H. Yoneyama, K. Nakajima, K. Okuda, S. Matsuo, M. Onoguchi, S. Kinuya, L. Edenbrandt, “Reducing the small-heart effect in pediatric gated myocardial perfusion single-photon emission computed tomography," J. Nucl. Cardiol. 24, 1378–1388 (2017).

    [8] J. Q. Chen, C. B. Liu, D. H. Hu, F. Wang, H. W. Wu, X. J. Gong, X. Liu, L. Song, Z. H. Sheng, H. R. Zheng, “Single-Layer MoS2 Nanosheets with ampli fied photoacoustic effect for highly sensitive photoacoustic imaging of orthotopic brain tumors," Adv. Funct. Mater. 26, 8715–8725 (2016).

    [9] Y. Y. Jiang, K. Y. Pu, “Advanced photoacoustic imaging applications of near-infrared absorbing organic nanoparticles," Small 13, 1700710 (2017).

    [10] F. Gong, L. Cheng, N. L. Yang, Q. T. Jin, L. L. Tian, M. Y. Wang, Y. G. Li, Z. Liu, “Bimetallic oxide mnmoox nanorods for in vivo photoacoustic imaging of gsh and tumor-specific photothermal therapy," Nano Lett. 18, 6037–6044 (2018).

    [11] Y. D. Jin, C. X. Jia, S. W. Huang, M. O'Donnell, X. H. Gao, “Multifunctional nanoparticles as coupled contrast agents," Nat. Commun. 1, 41 (2010).

    [12] S. Mallidi, G. P. Luke, S. Emelianov, “Photoacoustic imaging in cancer detection, diagnosis, and treatment guidance," Trends. Biotechnol. 29, 213–221 (2011).

    [13] A. C. Chen, S. Chatterjee, “Nanomaterials based electrochemical sensors for biomedical applications," Chem. Soc. Rev. 42, 5425–5438 (2013).

    [14] H. L. Qi, Y. Peng, Q. Gao, C. X. Zhang, “Applications of nanomaterials in electrogenerated chemiluminescence biosensors," Sensors 9, 674–695 (2009).

    [15] P. C. Ray, “Size and shape dependent second order nonlinear optical properties of nanomaterials and their application in biological and chemical sensing," Chem. Rev. 110, 5332–5365 (2010).

    [16] B. Xu, Y. N. Zhao, Z. F. Xiao, B. Wang, H. Liang, X. Li, Y. X. Fang, S. F. Han, X. R. Li, C. X. Fan, J. W. Dai, “A dual functional scaffold tethered with egfr antibody promotes neural stem cell retention and neuronal differentiation for spinal cord injury repair," Adv. Healthc. Mater. 6, 1601279 (2017).

    [17] Y. Ni, R. K. Kannadorai, J. J. Peng, S. W. K. Yu, Y. T. Chang, J. S. Wu, “Naphthalene-fused BODIPY near-infrared dye as a stable contrast agent for in vivo photoacoustic imaging," Chem. Commun. 52, 11504–11507 (2016).

    [18] J. C. Ge, Q. Y. Jia, W. M. Liu, L. Guo, Q. Y. Liu, M. H. Lan, H. Y. Zhang, X. M. Meng, P. F. Wang, “Red-emissive carbon dots for fluorescent, photoacoustic, and thermal theranostics in living mice," Adv. Mater. 27, 4169–4177 (2015).

    [19] R. Cheheltani, R. M. Ezzibdeh, P. Chhour, K. Pulaparthi, J. Kim, M. Jurcova, J. C. Hsu, C. Blundell, H. I. Litt, V. A. Ferrari, H. R. Allcock, C. M. Sehgal, D. P. Cormode, “Tunable, biodegradable gold nanoparticles as contrast agents for computed tomography and photoacoustic imaging," Biomaterials 102, 87–97 (2016).

    [20] G. X. Lv, W. S. Guo, W. Zhang, T. B. Zhang, S. Y. Li, S. Z. Chen, A. S. Eltahan, D. L. Wang, Y. Q. Wang, J. C. Zhang, P. C. Wang, J. Chang, X. J. Liang, “Near-infrared emission cuins/zns quantum dots: All-in-one theranostic nanomedicines with intrinsic fluorescence/photoacoustic imaging for tumor phototherapy," ACS Nano 10, 9637–9645 (2016).

    [21] S. K. Maji, S. Sreejith, J. Joseph, M. J. Lin, T. C. He, Y. Tong, H. D. Sun, S. W. K. Yu, Y. L. Zhao, “Upconversion nanoparticles as a contrast agent for photoacoustic imaging in live mice," Adv. Mater. 26, 5633–5638 (2014).

    [22] J. L. Grimland, C. F. Wu, R. R. Ramoutar, J. L. Brumaghim, J. McNeill, “Photosensitizer-doped conjugated polymer nanoparticles with high crosssections for one- and two-photon excitation," Nanoscale 3, 1451–1455 (2011).

    [23] H. B. Chen, H. Zhou, X. J. Men, K. Sun, Z. Z. Sun, X. F. Fang, C. F. Wu, “Light-induced pegylation and functionalization of semiconductor polymer dots," ChemNanoMat 3, 755–759 (2017).

    [24] X. Z. Chen, Z. H. Liu, R. Q. Li, C. Y. Shan, Z. P. Zeng, B. X. Xue, W. H. Yuan, C. Mo, P. Xi, C. F. Wu, Y. J. Sun, “Multicolor super-resolution fluorescence microscopy with blue and carmine small photoblinking polymer dots," ACS Nano 11, 8084–8091 (2017).

    [25] J. L. Geng, C. C. Goh, N. Tomczak, J. Liu, R. R. Liu, L. Ma, L. G. Ng, G. G. Gurzadyan, B. Liu, “Micelle/Silica Co-protected Conjugated polymer nanoparticles for two-photon excited brain vascular imaging," Chem. Mater. 26, 1874–1880 (2014).

    [26] C. F. Wu, D. T. Chiu, “Highly Fluorescent semiconducting polymer dots for biology and medicine," Angew. Chem. Int. Edit. 52, 3086–3109 (2013).

    [27] K. W. Chang, Y. B. Liu, D. H. Hu, Q. F. Qi, D. Y. Gao, Y. T. Wang, D. L. Li, X. J. Zhang, H. R. Zheng, Z. H. Sheng, Z. Yuan, “Highly stable conjugated polymer dots as multifunctional agents for photoacoustic imaging-guided photothermal therapy," ACS Appl. Mater. Inter. 10, 7012–7021 (2018).

    [28] P. Huang, J. Lin, W. W. Li, P. F. Rong, Z. Wang, S. J. Wang, X. P. Wang, X. L. Sun, M. Aronova, G. Niu, R. D. Leapman, Z. H. Nie, X. Y. Chen, “Biodegradable gold nanovesicles with an ultrastrong plasmonic coupling effect for photoacoustic imaging and photothermal therapy," Angew. Chem. Int. Edit. 52, 13958–13964 (2013).

    [29] K. Pu, J. G. Mei, J. V. Jokerst, G. S. Hong, A. L. Antaris, N. Chattopadhyay, A. J. Shuhendler, T. Kurosawa, Y. Zhou, S. S. Gambhir, Z. N. Bao, J. H. Rao, “Diketopyrrolopyrrole-based semiconducting polymer nanoparticles for in vivo photoacoustic imaging," Adv. Mater. 27, 5184–5190 (2015).

    [30] J. Liu, J. L. Geng, L. D. Liao, N. Thakor, X. H. Gao, B. Liu, “Conjugated polymer nanoparticles for photoacoustic vascular imaging," Polym. Chem. 5, 2854–2862 (2014).

    [31] K. Li, B. Liu, “Polymer-encapsulated organic nanoparticles for fluorescence and photoacoustic imaging," Chem. Soc. Rev. 43, 6570–6597 (2014).

    [32] J. C. Li, J. H. Rao, K. Y. Pu, “Recent progress on semiconducting polymer nanoparticles for molecular imaging and cancer phototherapy," Biomaterials 155, 217–235 (2018).

    [33] L.H. Feng,C.L.Zhu,H.X.Yuan,L. B.Liu, F.T.Lv, S. Wang, “Conjugated polymer nanoparticles: Preparation, properties, functionalization and biological applications," Chem. Soc. Rev. 42, 6620–6633 (2013).

    [34] H. B. Chen, J. Zhang, K. W. Chang, X. J. Men, X. F. Fang, L. B. Zhou, D. L. Li, D. Y. Gao, S. Y. Yin, X. J. Zhang, Z. Yuan, C. F. Wu, “Highly absorbing multispectral near-infrared polymer nanoparticles from one conjugated backbone for photoacoustic imaging and photothermal therapy," Biomaterials 144, 42–52 (2017).

    [35] J. Zhang, H. B. Chen, T. Zhou, L. M. Wang, D. Y. Gao, X. J. Zhang, Y. B. Liu, C. F. Wu, Z. Yuan, “A PIID-DTBT based semi-conducting polymer dots with broad and strong optical absorption in the visible-light region: Highly effective contrast agents for multiscale and multi-spectral photoacoustic imaging," Nano Res. 10, 64–76 (2017).

    [36] J. Liu, X. L. Cai, H. C. Pan, A. Bandla, C. K. Chuan, S. W. Wang, N. Thakor, L. D. Liao, B. Liu, “Molecular engineering of photoacoustic performance by chalcogenide variation in conjugated polymer nanoparticles for brain vascular imaging," Small 14, 1703732 (2018).

    [37] X. Zhen, X. H. Feng, C. Xie, Y. J. Zheng, K. Y. Pu, “Surface engineering of semiconducting polymer nanoparticles for amplified photoacoustic imaging," Biomaterials 127, 97–106 (2017).

    [38] C. Xie, P. K. Upputuri, X. Zhen, M. Pramanik, K. Y. Pu, “Self-quenched semiconducting polymer nanoparticles for amplified in vivo photoacoustic imaging," Biomaterials 119, 1–8 (2017).

    [39] D. Y. Gao, P. F. Zhang, Y. B. Liu, Z. H. Sheng, H. J. Chen, Z. Yuan, “Protein-modified conjugated polymer nanoparticles with strong near-infrared absorption: A novel nanoplatform to design multifunctional nanoprobes for dual-modal photoacoustic and fluorescence imaging," Nanoscale 10, 19742–19748 (2018).

    [40] C. Xie, X. Zhen, Q. L. Lei, R. Ni, K. Y. Pu, “Selfassembly of semiconducting polymer amphiphiles for in vivo photoacoustic imaging," Adv. Funct. Mater. 27, 1605397 (2017).

    [41] Z. Yang,W. P. Fan, W. Tang, Z. Y. Shen, Y. L. Dai, J. B. Song, Z. T. Wang, Y. Liu, L. S. Lin, L. L. Shan, Y. J. Liu, O. Jacobson, P. F. Rong, W. Wang, X. Y. Chen, “Near-infrared semiconducting polymer brush and ph/gsh-responsive polyoxometalate cluster hybrid platform for enhanced tumor-specific phototheranostcs," Angew. Chem. Int. Edit. 57, 14101–14105 (2018).

    [42] B. Guo, Z. H. Sheng, D. H. Hu, C. B. Liu, H. R. Zheng, B. Liu, “Through scalp and skull nir-ii photothermal therapy of deep orthotopic brain tumors with precise photoacoustic imaging guidance," Adv. Mater. 30, 1802591 (2018).

    [43] Y. Y. Jiang, D. Cui, Y. Fang, X. Zhen, P. K. Upputuri, M. Pramanik, D. Ding, K. Y. Pu, “Amphiphilic semiconducting polymer as multifunctional nanocarrier for fluorescence/photoacoustic imaging guided chemo-photothermal therapy," Biomaterials 145, 168–177 (2017).

    [44] Y. Cai, P. P. Liang, Q. Y. Tang, X. Y. Yang, W. L. Si, W. Huang, Q. Zhang, X. C. Dong, “Diketopyrrolopyrrole-triphenylamine organic nanoparticles as multifunctional reagents for photoacoustic imaging-guided photodynamic/photothermal synergistic tumor therapy," ACS Nano 11, 1054–1063 (2017).

    Xiaoju Men, Zhen Yuan. Multifunctional conjugated polymer nanoparticles for photoacoustic-based multimodal imaging and cancer photothermal therapy[J]. Journal of Innovative Optical Health Sciences, 2019, 12(3): 1930001
    Download Citation