• Advanced Photonics
  • Vol. 4, Issue 1, 014002 (2022)
Emanuele Galiffi1、2、*, Romain Tirole2、†, Shixiong Yin1, Huanan Li1、3, Stefano Vezzoli2, Paloma A. Huidobro4, Mário G. Silveirinha4, Riccardo Sapienza2, Andrea Alù1、5, and J. B. Pendry2
Author Affiliations
  • 1City University of New York, Photonics Initiative, Advanced Science Research Center, New York, United States
  • 2Imperial College London, Blackett Laboratory, Department of Physics, London, United Kingdom
  • 3Nankai University, School of Physics, Tianjin, China
  • 4Instituto de Telecomunicações, Instituto Superior Técnico-University of Lisbon, Lisboa, Portugal
  • 5City University of New York, Physics Program, Graduate Center, New York, United States
  • show less
    DOI: 10.1117/1.AP.4.1.014002 Cite this Article Set citation alerts
    Emanuele Galiffi, Romain Tirole, Shixiong Yin, Huanan Li, Stefano Vezzoli, Paloma A. Huidobro, Mário G. Silveirinha, Riccardo Sapienza, Andrea Alù, J. B. Pendry. Photonics of time-varying media[J]. Advanced Photonics, 2022, 4(1): 014002 Copy Citation Text show less
    References

    [1] E. Knox, A. Wilson. The Routledge Companion to Philosophy of Physics, 786(2021).

    [2] R. Schützhold, W. G. Unruh. Hawking radiation in an electromagnetic waveguide?. Phys. Rev. Lett., 95, 031301(2005).

    [3] T. G. Philbin et al. Fiber-optical analog of the event horizon. Science, 319, 1367-1370(2008).

    [4] A. Shapere, F. Wilczek. Classical time crystals. Phys. Rev. Lett., 109, 160402(2012).

    [5] K. Sacha, J. Zakrzewski. Time crystals: a review. Rep. Prog. Phys., 81, 016401(2018).

    [6] N. Y. Yao et al. Classical discrete time crystals. Nat. Phys., 16, 438-447(2020).

    [7] H. Keßler et al. Observation of a dissipative time crystal. Phys. Rev. Lett., 127, 043602(2021).

    [8] N. Engheta. Metamaterials with high degrees of freedom: space, time, and more. Nanophotonics, 10, 639-642(2020).

    [9] L. Novotny, B. Hecht. Principles of Nano-Optics(2012).

    [10] B. E. Saleh, M. C. Teich. Fundamentals of Photonics(2019).

    [11] R. W. Boyd. Nonlinear Optics(2020).

    [12] V. G. Veselago. Electrodynamics of substances with simultaneously negative electrical and magnetic permeabilities. Sov. Phys. Usp., 10, 504-509(1968).

    [13] J. B. Pendry. Negative refraction makes a perfect lens. Phys. Rev. Lett., 85, 3966-3969(2000).

    [14] A. Alù et al. Epsilon-near-zero metamaterials and electromagnetic sources: tailoring the radiation phase pattern. Phys. Rev. B, 75, 155410(2007).

    [15] A. K. Iyer, A. Alù, A. Epstein. Metamaterials and metasurfaces—historical context, recent advances, and future directions. IEEE Trans. Antennas Propag., 68, 1223-1231(2020).

    [16] F. R. Morgenthaler. Velocity modulation of electromagnetic waves. IRE Trans. Microwave Theory Tech., 6, 167-172(1958).

    [17] J. T. Mendonça. Theory of Photon Acceleration(2000).

    [18] J. D. Jackson. Classical Electrodynamics(2012).

    [19] B. Auld, J. H. Collins, H. Zapp. Signal processing in a nonperiodically time-varying magnetoelastic medium. Proc. IEEE, 56, 258-272(1968).

    [20] R. Fante. Transmission of electromagnetic waves into time-varying media. IEEE Trans. Antennas Propag., 19, 417-424(1971).

    [21] R. Fante. On the propagation of electromagnetic waves through a time-varying dielectric layer. Appl. Sci. Res., 27, 341-354(1973).

    [22] P. Mukherjee, S. Talwar. Reflection and transmission of electromagnetic waves at a moving magnetoplasma half-space. Radio Sci., 8, 653-665(1973).

    [23] Y. Xiao, D. N. Maywar, G. P. Agrawal. Reflection and transmission of electromagnetic waves at a temporal boundary. Opt. Lett., 39, 574-577(2014).

    [24] M. A. Salem, C. Caloz. Space-time cross-mapping and application to wave scattering(2015).

    [25] C. Caloz, Z.-L. Deck-Léger. Spacetime metamaterials—part II: theory and applications. IEEE Trans. Antennas Propag., 68, 1583-1598(2020).

    [26] M. Bakunov, A. Maslov. Reflection and transmission of electromagnetic waves at a temporal boundary: comment. Opt. Lett., 39, 6029(2014).

    [27] D. K. Kalluri. Electromagnetics of Time Varying Complex Media: Frequency and Polarization Transformer(2018).

    [28] A. Akbarzadeh, N. Chamanara, C. Caloz. Inverse prism based on temporal discontinuity and spatial dispersion. Opt. Lett., 43, 3297-3300(2018).

    [29] M. Bakunov et al. Light scattering at a temporal boundary in a Lorentz medium. Opt. Lett., 46, 4988-4991(2021).

    [30] D. M. Solís, R. Kastner, N. Engheta. Time-varying materials in the presence of dispersion: plane-wave propagation in a Lorentzian medium with temporal discontinuity. Photon. Res., 9, 1842-1853(2021).

    [31] J. Gratus et al. Temporal boundaries in electromagnetic materials. New J. Phys., 23, 083032(2021).

    [32] J. Zhang, W. Donaldson, G. Agrawal. Temporal reflection and refraction of optical pulses inside a dispersive medium: an analytic approach. J. Opt. Soc. Am. B, 38, 997-1003(2021).

    [33] J. Zhang, W. Donaldson, G. P. Agrawal. Time-domain Fabry–Perot resonators formed inside a dispersive medium. J. Opt. Soc. Am. B, 38, 2376-2382(2021).

    [34] K. Sacha. Modeling spontaneous breaking of time-translation symmetry. Phys. Rev. A, 91, 033617(2015).

    [35] D. V. Else, B. Bauer, C. Nayak. Floquet time crystals. Phys. Rev. Lett., 117, 090402(2016).

    [36] N. Y. Yao et al. Discrete time crystals: rigidity, criticality, and realizations. Phys. Rev. Lett., 118, 030401(2017).

    [37] V. Pacheco-Peña, N. Engheta. Temporal metamaterials with gain and loss(2021).

    [38] J. Mendonça, A. Martins, A. Guerreiro. Temporal beam splitter and temporal interference. Phys. Rev. A, 68, 043801(2003).

    [39] V. Pacheco-Peña, N. Engheta. Antireflection temporal coatings. Optica, 7, 323-331(2020).

    [40] H. Li et al. Temporal parity-time symmetry for extreme energy transformations. Phys. Rev. Lett., 127, 153903(2021).

    [41] D. M. Pozar. Microwave Engineering(2011).

    [42] D. Christodoulides et al. Parity-Time Symmetry and Its Applications, 280(2018).

    [43] V. Pacheco-Peña, N. Engheta. Temporal aiming. Light Sci. Appl., 9, 129(2020).

    [44] V. Pacheco-Peña, N. Engheta. Temporal Brewster angle. Phys. Rev. B, 104, 214308(2021).

    [45] J. Xu, W. Mai, D. H. Werner. Complete polarization conversion using anisotropic temporal slabs. Opt. Lett., 46, 1373-1376(2021).

    [46] Z. Hayran, A. Chen, F. Monticone. Spectral causality and the scattering of waves. Optica, 8, 1040-1049(2021).

    [47] D. M. Sols, N. Engheta. Functional analysis of the polarization response in linear time-varying media: a generalization of the Kramers–Kronig relations. Phys. Rev. B, 103, 144303(2021).

    [48] E. Yablonovitch. Spectral broadening in the light transmitted through a rapidly growing plasma. Phys. Rev. Lett., 31, 877-879(1973).

    [49] E. Yablonovitch. Self-phase modulation of light in a laser-breakdown plasma. Phys. Rev. Lett., 32, 1101-1104(1974).

    [50] C.-L. Jiang. Wave propagation and dipole radiation in a suddenly created plasma. IEEE Trans. Antennas Propag., 23, 83-90(1975).

    [51] S. Wilks, J. Dawson, W. Mori. Frequency up-conversion of electromagnetic radiation with use of an overdense plasma. Phys. Rev. Lett., 61, 337-340(1988).

    [52] V. Bacot et al. Time reversal and holography with spacetime transformations. Nat. Phys., 12, 972-977(2016).

    [53] G. A. Menendez, B. Maes. Time reflection and refraction of graphene plasmons at a temporal discontinuity. Opt. Lett., 42, 5006-5009(2017).

    [54] J. Wilson et al. Temporal control of graphene plasmons. Phys. Rev. B, 98, 081411(2018).

    [55] A. Maslov, M. Bakunov. Temporal scattering of a graphene plasmon by a rapid carrier density decrease. Optica, 5, 1508-1515(2018).

    [56] A. Shlivinski, Y. Hadad. Beyond the Bode-Fano bound: wideband impedance matching for short pulses using temporal switching of transmission-line parameters. Phys. Rev. Lett., 121, 204301(2018).

    [57] H. Li, A. Alù. Temporal switching to extend the bandwidth of thin absorbers. Optica, 8, 24-29(2021).

    [58] Y. Mazor, M. Cotrufo, A. Alù. Unitary excitation transfer between coupled cavities using temporal switching. Phys. Rev. Lett., 127, 013902(2021).

    [59] V. Pacheco-Peña, N. Engheta. Spatiotemporal isotropic-to-anisotropic meta-atoms. New J. Phys., 23, 095006(2021).

    [60] F. Miyamaru et al. Ultrafast frequency-shift dynamics at temporal boundary induced by structural-dispersion switching of waveguides. Phys. Rev. Lett., 127, 053902(2021).

    [61] W. Mori et al. Conversion of DC fields in a capacitor array to radiation by a relativistic ionization front. Phys. Rev. Lett., 74, 542-545(1995).

    [62] M. Cirone, K. Rzaz-Dotewski, J. Mostowski. Photon generation by time-dependent dielectric: a soluble model. Phys. Rev. A, 55, 62-66(1997).

    [63] M. J. Mencagli et al. Static-to-dynamic field conversion with time-varying media(2021).

    [64] G. Ptitcyn, M. S. Mirmoosa, S. A. Tretyakov. Time-modulated meta-atoms. Phys. Rev. Res., 1, 023014(2019).

    [65] M. S. Mirmoosa et al. Dipole polarizability of time-varying particles(2020).

    [66] G. Ptitcyn et al. Scattering from spheres made of time-varying and dispersive materials(2021).

    [67] J. Tunesi et al. Terahertz emission mediated by ultrafast time-varying metasurfaces. Phys. Rev. Res., 3, L042006(2021).

    [68] L. Stefanini et al. Temporal interfaces and metamaterial response enabled by boundaries(2021).

    [69] J. R. Sanmartn. O botafumeiro: parametric pumping in the middle ages. Am. J. Phys., 52, 937-945(1984).

    [70] F. Wilczek. Quantum time crystals. Phys. Rev. Lett., 109, 160401(2012).

    [71] K. Sacha. Time Crystals(2020).

    [72] E. Lustig, Y. Sharabi, M. Segev. Topological aspects of photonic time crystals. Optica, 5, 1390-1395(2018).

    [73] D. Torrent, W. J. Parnell, A. N. Norris. Loss compensation in time-dependent elastic metamaterials. Phys. Rev. B, 97, 014105(2018).

    [74] D. Ramaccia et al. Temporal multilayer structures for designing higher-order transfer functions using time-varying metamaterials. Appl. Phys. Lett., 118, 101901(2021).

    [75] G. Castaldi et al. Exploiting space-time duality in the synthesis of impedance transformers via temporal metamaterials. Nanophotonics, 10, 3687-3699(2021).

    [76] J. G. Gaxiola-Luna, P. Halevi. Temporal photonic (time) crystal with a square profile of both permittivity ε(t) and permeability μ (t). Phys. Rev. B, 103, 144306(2021).

    [77] L. Yuan, A. Dutt, S. Fan. Synthetic frequency dimensions in dynamically modulated ring resonators. APL Photonics, 6, 071102(2021).

    [78] L. Yuan et al. Synthetic dimension in photonics. Optica, 5, 1396-1405(2018).

    [79] L. Yuan, Y. Shi, S. Fan. Photonic gauge potential in a system with a synthetic frequency dimension. Opt. Lett., 41, 741-744(2016).

    [80] A. Dutt et al. A single photonic cavity with two independent physical synthetic dimensions. Science, 367, 59-64(2020).

    [81] C. W. Peterson et al. Strong nonreciprocity in modulated resonator chains through synthetic electric and magnetic fields. Phys. Rev. Lett., 123, 063901(2019).

    [82] J. S. Hung et al. Quantum simulation of the bosonic Creutz ladder with a parametric cavity. Phys. Rev. Lett., 127, 100503(2021).

    [83] A. Dutt et al. Experimental demonstration of dynamical input isolation in nonadiabatically modulated photonic cavities. ACS Photonics, 6, 162-169(2019).

    [84] M. Zhang et al. Electronically programmable photonic molecule. Nat. Photonics, 13, 36-40(2019).

    [85] X. Ni, S. Kim, A. Alù. Topological insulator in two synthetic dimensions based on an optomechanical resonator. Optica, 8, 1024-1032(2021).

    [86] T. T. Koutserimpas, R. Fleury. Nonreciprocal gain in non-Hermitian time-Floquet systems. Phys. Rev. Lett., 120, 087401(2018).

    [87] R. Carminati et al. Universal statistics of waves in a random time-varying medium. Phys. Rev. Lett., 127, 4101(2021).

    [88] T. T. Koutserimpas, A. Alù, R. Fleury. Parametric amplification and bidirectional invisibility in PT-symmetric time-Floquet systems. Phys. Rev. A, 97, 013839(2018).

    [89] F. M. Arscott. Theory and Application of Mathieu Functions. By N. W. Mclachlan. pp. xii, 401. (Dover, New York.). Math. Gaz., 52, 94-95(1968).

    [90] N. Wang, Z.-Q. Zhang, C. T. Chan. Photonic Floquet media with a complex time-periodic permittivity. Phys. Rev. B, 98, 085142(2018).

    [91] A. Bossart, R. Fleury. Non-Hermitian time evolution: from static to parametric instability. Phys. Rev. A, 104, 2225(2021).

    [92] T. T. Koutserimpas, R. Fleury. Electromagnetic fields in a time-varying medium: exceptional points and operator symmetries. IEEE Trans. Antennas Propag., 68, 6717-6724(2020).

    [93] M. Li et al. Topological phases and nonreciprocal edge states in non-Hermitian Floquet insulators. Phys. Rev. B, 100, 045423(2019).

    [94] K. Wang et al. Topological complex-energy braiding of non-Hermitian bands. Nature, 598, 59-64(2021).

    [95] S. Horsley, M. Artoni, G. La Rocca. Spatial Kramers–Kronig relations and the reflection of waves. Nat. Photonics, 9, 436-439(2015).

    [96] B. Apffel et al. Time localization of energy in disordered time-modulated systems(2021).

    [97] Y. Sharabi, E. Lustig, M. Segev. Disordered photonic time crystals. Phys. Rev. Lett., 126, 163902(2021).

    [98] J. Pendry. The evolution of waves in disordered media. J. Phys. C Solid State Phys., 15, 3493-3511(1982).

    [99] U. C. Fischer, D. Pohl. Observation of single-particle plasmons by near-field optical microscopy. Phys. Rev. Lett., 62, 458-461(1989).

    [100] R. W. Wood. XLII. On a remarkable case of uneven distribution of light in a diffraction grating spectrum. London Edinburgh Dublin Philos. Mag. J. Sci., 4, 396-402(1902).

    [101] E. Galiffi et al. Wood anomalies and surface-wave excitation with a time grating. Phys. Rev. Lett., 125, 127403(2020).

    [102] Z. Wu, A. Grbic. Serrodyne frequency translation using time-modulated metasurfaces. IEEE Trans. Antennas Propag., 68, 1599-1606(2020).

    [103] R. C. Cumming. The serrodyne frequency translator. Proc. IRE, 45, 175-186(1957).

    [104] X. Wang et al. Theory and design of multifunctional space-time metasurfaces. Phys. Rev. Appl., 13, 044040(2020).

    [105] D. Ramaccia et al. Phase-induced frequency conversion and Doppler effect with time-modulated metasurfaces. IEEE Trans. Antennas Propag., 68, 1607-1617(2020).

    [106] C. Scarborough, Z. Wu, A. Grbic. Efficient computation of spatially discrete traveling-wave modulated structures. IEEE Trans. Antennas Propag., 69, 8512-8525(2021).

    [107] Z. Wu, C. Scarborough, A. Grbic. Space-time-modulated metasurfaces with spatial discretization: free-space n-path systems. Phys. Rev. Appl., 14, 064060(2020).

    [108] X. Wang et al. Space–time metasurfaces for power combining of waves. ACS Photonics, 8, 3034-3041(2021).

    [109] D. Ramaccia et al. Electromagnetic isolation induced by time-varying metasurfaces: nonreciprocal Bragg grating. IEEE Antennas Wirel. Propag. Lett., 19, 1886-1890(2020).

    [110] H. B. Sedeh, M. M. Salary, H. Mosallaei. Time-varying optical vortices enabled by time-modulated metasurfaces. Nanophotonics, 9, 2957-2976(2020).

    [111] Y. Hadad, D. L. Sounas, A. Alù. Space-time gradient metasurfaces. Phys. Rev. B, 92, 100304(2015).

    [112] J. S. Martínez-Romero, P. Halevi. Parametric resonances in a temporal photonic crystal slab. Phys. Rev. A, 98, 053852(2018).

    [113] L. Zhang et al. A wireless communication scheme based on space- and frequency-division multiplexing using digital metasurfaces. Nat. Electron., 4, 218-227(2021).

    [114] L. Zhang et al. Space-time-coding digital metasurfaces. Nat. Commun., 9, 4334(2018).

    [115] A. M. Shaltout et al. Spatiotemporal light control with frequency-gradient metasurfaces. Science, 365, 374-377(2019).

    [116] A. M. Shaltout, V. M. Shalaev, M. L. Brongersma. Spatiotemporal light control with active metasurfaces. Science, 364, eaat3100(2019).

    [117] X. Wang et al. Nonreciprocity in bianisotropic systems with uniform time modulation. Phys. Rev. Lett., 125, 266102(2020).

    [118] J. S. Martínez-Romero, O. Becerra-Fuentes, P. Halevi. Temporal photonic crystals with modulations of both permittivity and permeability. Phys. Rev. A, 93, 063813(2016).

    [119] Z.-L. Deck-Léger et al. Uniform-velocity spacetime crystals. Adv. Photonics, 1, 056002(2019).

    [120] E. Galiffi, P. A. Huidobro, J. B. Pendry. Broadband nonreciprocal amplification in luminal metamaterials. Phys. Rev. Lett., 123, 206101(2019).

    [121] D. L. Sounas, A. Alù. Non-reciprocal photonics based on time modulation. Nat. Photonics, 11, 774-783(2017).

    [122] J. Pierce. Theory of the beam-type traveling-wave tube. Proc. IRE, 35, 111-123(1947).

    [123] A. L. Cullen. A travelling-wave parametric amplifier. Nature, 181, 332(1958).

    [124] A. Oliner, A. Hessel. Wave propagation in a medium with a progressive sinusoidal disturbance. IRE Trans. Microwave Theory Tech., 9, 337-343(1961).

    [125] E. Cassedy, A. Oliner. Dispersion relations in time-space periodic media—part I: stable interactions. Proc. IEEE, 51, 1342-1359(1963).

    [126] E. Cassedy. Dispersion relations in time-space periodic media— part II: unstable interactions. Proc. IEEE, 55, 1154-1168(1967).

    [127] R. L. Fante. Optical propagation in space–time-modulated media using many-space-scale perturbation theory. J. Opt. Soc. Am., 62, 1052-1060(1972).

    [128] J. N. Winn et al. Interband transitions in photonic crystals. Phys. Rev. B, 59, 1551-1554(1999).

    [129] F. Biancalana et al. Dynamics of light propagation in spatiotemporal dielectric structures. Phys. Rev. E, 75, 046607(2007).

    [130] S. Taravati, N. Chamanara, C. Caloz. Nonreciprocal electromagnetic scattering from a periodically space-time modulated slab and application to a quasisonic isolator. Phys. Rev. B, 96, 165144(2017).

    [131] Y. Sivan, S. Rozenberg, A. Halstuch. Coupled-mode theory for electromagnetic pulse propagation in dispersive media undergoing a spatiotemporal perturbation: exact derivation, numerical validation, and peculiar wave mixing. Phys. Rev. B, 93, 144303(2016).

    [132] Z. Yu, S. Fan. Complete optical isolation created by indirect interband photonic transitions. Nat. Photonics, 3, 91-94(2009).

    [133] H. Lira et al. Electrically driven nonreciprocity induced by interband photonic transition on a silicon chip. Phys. Rev. Lett., 109, 033901(2012).

    [134] C. Caloz, Z.-L. Deck-Leger. Spacetime metamaterials—part I: general concepts. IEEE Trans. Antennas Propag., 68, 1569-1582(2020).

    [135] E. Cassedy, A. Oliner. Dispersion relations in time-space periodic media: part I–stable interactions. Proc. IEEE, 51, 1342(1963).

    [136] D.-W. Wang et al. Optical diode made from a moving photonic crystal. Phys. Rev. Lett., 110, 093901(2013).

    [137] N. Chamanara et al. Optical isolation based on space-time engineered asymmetric photonic band gaps. Phys. Rev. B, 96, 155409(2017).

    [138] D. L. Sounas, C. Caloz, A. Alù. Giant non-reciprocity at the subwavelength scale using angular momentum-biased metamaterials. Nat. Commun., 4, 2407(2013).

    [139] N. A. Estep et al. Magnetic-free non-reciprocity and isolation based on parametrically modulated coupled-resonator loops. Nat. Phys., 10, 923-927(2014).

    [140] C. Caloz et al. Electromagnetic nonreciprocity. Phys. Rev. Appl., 10, 047001(2018).

    [141] J. V. Bladel. Relativity and Engineering(1984).

    [142] A. Fresnel. Lettre d’augustin Fresnel à François Arago sur l’influence du mouvement terrestre dans quelques phénomènes d’optique. Ann. Chim. Phys., 9, 57-66(1818).

    [143] H. Fizeau. Sur les hypotheses relatives à l’ether lumineux. Comptes Rendus l’Acad. Sci., 33, 349(1851).

    [144] J. A. Kong. Electromagnetic Wave Theory(2008).

    [145] R. Fleury et al. Sound isolation and giant linear nonreciprocity in a compact acoustic circulator. Science, 343, 516-519(2014).

    [146] S. Lannebère, M. G. Silveirinha. Wave instabilities and unidirectional light flow in a cavity with rotating walls. Phys. Rev. A, 94, 033810(2016).

    [147] J. B. Pendry. Shearing the vacuum—quantum friction. J. Phys. Condens. Matter., 9, 10301(1997).

    [148] M. G. Silveirinha. Theory of quantum friction. New J. Phys., 16, 063011(2014).

    [149] B. Shapiro. Fluctuation-induced forces in the presence of mobile carrier drift. Phys. Rev. B, 96, 075407(2017).

    [150] A. I. Volokitin, B. N. J. Persson. Quantum friction. Phys. Rev. Lett., 106, 094502(2011).

    [151] Y. B. Zeldovich. Generation of waves by a rotating body. JETP Lett., 14, 180(1971).

    [152] M. G. Silveirinha. Optical instabilities and spontaneous light emission by polarizable moving matter. Phys. Rev. X, 4, 031013(2014).

    [153] D. Faccio, E. M. Wright. Nonlinear Zeldovich effect: parametric amplification from medium rotation. Phys. Rev. Lett., 118, 093901(2017).

    [154] V. K. O. Sydoruk, E. Shamonina, L. Solymar. Terahertz instability of surface optical-phonon polaritons that interact with surface plasmon polaritons in the presence of electron drift. Phys Plasmas, 17, 102103(2010).

    [155] T. A. Morgado, M. G. Silveirinha. Negative Landau damping in bilayer graphene. Phys. Rev. Lett., 119, 133901(2017).

    [156] B. V. Duppen et al. Current-induced birefrigent absorption and non-reciprocal plasmons in graphene. 2D Mater., 3, 015011(2016).

    [157] T. A. Morgado, M. G. Silveirinha. Drift-induced unidirectional graphene plasmons. ACS Photonics, 5, 4253-4258(2018).

    [158] B. Shapiro. Thermal fluctuations of the electric field in the presence of carrier drift. Phys. Rev. B, 82, 075205(2010).

    [159] Y. Dong et al. Fizeau drag in graphene plasmonics. Nature, 594, 513-516(2021).

    [160] W. Zhao et al. Efficient Fizeau drag from Dirac electrons in monolayer graphene. Nature, 594, 517(2021).

    [161] P. A. Huidobro et al. Fresnel drag in space–time-modulated metamaterials. Proc. Natl. Acad. Sci., 116, 24943-24948(2019).

    [162] Y. Mazor, A. Alù. One-way hyperbolic metasurfaces based on synthetic motion. IEEE Trans. Antennas Propag., 68, 1739-1747(2020).

    [163] P. A. Huidobro et al. Homogenization theory of space-time metamaterials. Phys. Rev. Appl., 16, 014044(2021).

    [164] S. T. A. Serdyukov, I. Semchenko, A. Sihvola. Electromagnetics of Bianisotropic Materials Theory and Applications(2001).

    [165] D. R. Smith, J. Pendry. Homogenization of metamaterials by field averaging. J. Opt. Soc. Am. B, 23, 391-403(2006).

    [166] M. G. Silveirinha. Metamaterial homogenization approach with application to the characterization of microstructured composites with negative parameters. Phys. Rev. B, 75, 115104(2007).

    [167] C. R. Simovski, S. A. Tretyakov. Local constitutive parameters of metamaterials from an effective-medium perspective. Phys. Rev. B, 75, 195111(2007).

    [168] A. Alù. First-principles homogenization theory for periodic metamaterials. Phys. Rev. B, 84, 075153(2011).

    [169] H. T. To. Homogenization of dynamic laminates. J. Math. Anal. Appl., 354, 518-538(2009).

    [170] K. Lurie. An Introduction to the Mathematical Theory of Waves(2007).

    [171] D. E. Aspnes. Local-field effects and effective-medium theory: a microscopic perspective. Am. J. Phys., 50, 704(1982).

    [172] J. B. Pendry et al. Magnetism from conductors and enhanced nonlinear phenomena,. IEEE Trans. Microwave Theory Technol., 47, 2075(1999).

    [173] D. N. Astrov. Magnetoelectric effect in chromium oxide. Sov. Phys. JETP, 13, 729(1961).

    [174] S. Coh, D. Vanderbilt. Canonical magnetic insulators with isotropic magnetoelectric coupling. Phys. Rev. B, 88, 121106(2013).

    [175] S. Taravati. Giant linear nonreciprocity, zero reflection, and zero band gap in equilibrated space-time-varying media. Phys. Rev. Appl., 9, 064012(2018).

    [176] E. Galiffi et al. Photon localization and Bloch symmetry breaking in luminal gratings. Phys. Rev. B, 104, 014302(2021).

    [177] E. Galiffi. New degrees of freedom for metamaterials and metasurfaces: from hidden spatial dimensions to dynamical structures(2020).

    [178] J. Pendry, E. Galiffi, P. Huidobro. Gain in time-dependent media—a new mechanism. J. Opt. Soc. Am. B, 38, 3360-3366(2021).

    [179] J. Pendry, E. Galiffi, P. Huidobro. Gain mechanism in time-dependent media. Optica, 8, 636-637(2021).

    [180] N. Chamanara, D. G. Cooke, C. Caloz. Linear pulse compansion based on space-time modulation. IEEE Int. Symp. Antennas and Propag. and USNC-URSI Radio Sci. Meeting, 239-240(2019).

    [181] H. B. Sedeh, M. M. Salary, H. Mosallaei. Topological space-time photonic transitions in angular-momentum-biased metasurfaces. Adv. Opt. Mater., 8, 2000075(2020).

    [182] Y. Hadad, J. C. Soric, A. Alù. Breaking temporal symmetries for emission and absorption. Proc. Natl. Acad. Sci., 113, 3471-3475(2016).

    [183] A. Shaltout, A. Kildishev, V. Shalaev. Time-varying metasurfaces and Lorentz non-reciprocity. Opt. Mater. Express, 5, 2459-2467(2015).

    [184] L. Zhang et al. Breaking reciprocity with space-time-coding digital metasurfaces. Adv. Mater., 31, 1904069(2019).

    [185] H. Rajabalipanah et al. Analog signal processing through space-time digital metasurfaces. Nanophotonics, 10, 1753-1764(2021).

    [186] D. Oue, K. Ding, J. Pendry. Čerenkov radiation in vacuum from a superluminal grating(2021).

    [187] W. J. M. Kort-Kamp, A. K. Azad, D. A. R. Dalvit. Space-time quantum metasurfaces. Phys. Rev. Lett., 127, 043603(2021).

    [188] N. Chamanara et al. Unusual electromagnetic modes in space-time-modulated dispersion-engineered media. Phys. Rev. A, 97, 063829(2018).

    [189] D. Torrent. Strong spatial dispersion in time-modulated dielectric media. Phys. Rev. B, 102, 214202(2020).

    [190] E. Galiffi, P. A. Huidobro, J. Pendry. An Archimedes’ screw for light(2021).

    [191] R. Fleury, A. B. Khanikaev, A. Alù. Floquet topological insulators for sound. Nat. Commun., 7, 11744(2016).

    [192] L. He et al. Floquet Chern insulators of light. Nat. Commun., 10, 4194(2019).

    [193] K. Fang, Z. Yu, S. Fan. Photonic Aharonov–Bohm effect based on dynamic modulation. Phys. Rev. Lett., 108, 153901(2012).

    [194] Q. Lin et al. Photonic Weyl point in a two-dimensional resonator lattice with a synthetic frequency dimension. Nat. Commun., 7, 13731(2016).

    [195] G. W. Milton, O. Mattei. Field patterns: a new mathematical object. Proc. R. Soc. A, 473, 20160819(2017).

    [196] O. Mattei, G. W. Milton. Field patterns without blow up. New J. Phys., 19, 093022(2017).

    [197] D. Torrent, O. Poncelet, J.-C. Batsale. Nonreciprocal thermal material by spatiotemporal modulation. Phys. Rev. Lett., 120, 125501(2018).

    [198] H. Nassar et al. Quantization of band tilting in modulated phononic crystals. Phys. Rev. B, 97, 014305(2018).

    [199] J. Li et al. Transfer matrix method for the analysis of space-time-modulated media and systems. Phys. Rev. B, 100, 144311(2019).

    [200] M. Camacho, B. Edwards, N. Engheta. Achieving asymmetry and trapping in diffusion with spatiotemporal metamaterials. Nat. Commun., 11, 3733(2020).

    [201] Y. Wang et al. Observation of nonreciprocal wave propagation in a dynamic phononic lattice. Phys. Rev. Lett., 121, 194301(2018).

    [202] Z. Chen et al. Efficient nonreciprocal mode transitions in spatiotemporally modulated acoustic metamaterials. Sci. Adv., 7, eabj1198(2021).

    [203] X. Xu et al. Physical observation of a robust acoustic pumping in waveguides with dynamic boundary. Phys. Rev. Lett., 125, 253901(2020).

    [204] C. Cho et al. Digitally virtualized atoms for acoustic metamaterials. Nat. Commun., 11, 251(2020).

    [205] X. Wen et al. Unidirectional amplification with acoustic non-Hermitian space–time varying metamaterial. Commun. Phys., 5, 18(2022).

    [206] V. Bacot et al. Phase-conjugate mirror for water waves driven by the Faraday instability. Proc. Natl. Acad. Sci. U. S. A., 116, 8809-8814(2019).

    [207] K. Schultheiss et al. Time refraction of spin waves. Phys. Rev. Lett., 126, 137201(2021).

    [208] E. A. Kittlaus et al. Non-reciprocal interband Brillouin modulation. Nat. Photonics, 12, 613-619(2018).

    [209] Z. Shen et al. Experimental realization of optomechanically induced non-reciprocity. Nat. Photonics, 10, 657-661(2016).

    [210] N. Kinsey et al. Near-zero-index materials for photonics. Nat. Rev. Mater., 4, 742-760(2019).

    [211] M. Z. Alamet?al.. Large optical nonlinearity of indium tin oxide in its epsilon-near-zero region. Science, 352, 795-797(2016).

    [212] L. Caspani et al. Enhanced nonlinear refractive index in ε-near-zero materials. Phys. Rev. Lett., 116, 233901(2016).

    [213] T. S. Luk et al. Enhanced third harmonic generation from the epsilon-near-zero modes of ultrathin films. Appl. Phys. Lett., 106, 151103(2015).

    [214] E. G. Carnemolla et al. Degenerate optical nonlinear enhancement in epsilon-near-zero transparent conducting oxides. Opt. Mater. Express, 8, 3392-3400(2018).

    [215] Y. Zhou et al. Broadband frequency translation through time refraction in an epsilon-near-zero material. Nat. Commun., 11, 2180(2020).

    [216] V. Bruno et al. Broad frequency shift of parametric processes in epsilon-near-zero time-varying media. Appl. Sci., 10, 1318(2020).

    [217] V. Bruno et al. Negative refraction in time-varying strongly coupled plasmonic-antenna–epsilon-near-zero systems. Phys. Rev. Lett., 124, 043902(2020).

    [218] K. Pang et al. Adiabatic frequency conversion using a time-varying epsilon-near-zero metasurface. Nano Lett., 21, 5907-5913(2021).

    [219] M. Ferrera, E. G. Carnemolla. Ultra-fast transient plasmonics using transparent conductive oxides. J. Opt., 20, 024007(2018).

    [220] S. Vezzoli et al. Optical time reversal from time-dependent epsilon-near-zero media. Phys. Rev. Lett., 120, 043902(2018).

    [221] J. Bohn, T. S. Luk, E. Hendry. Spatiotemporal refraction of light in an epsilon-near-zero indium tin oxide layer: frequency shifting effects arising from interfaces. Optica, 8, 1532-1537(2021).

    [222] C. Liu et al. Photon acceleration using a time-varying epsilon-near-zero metasurface. ACS Photonics, 8, 716-720(2021).

    [223] P. Guo et al. Large optical nonlinearity of ITO nanorods for sub-picosecond all-optical modulation of the full-visible spectrum. Nat. Commun., 7, 12892(2016).

    [224] S. Vassant et al. Berreman mode and epsilon near zero mode. Opt. Express, 20, 23971(2012).

    [225] J. Bohn et al. All-optical switching of an epsilon-near-zero plasmon resonance in indium tin oxide. Nat. Commun., 12, 1017(2021).

    [226] M. Z. Alam et al. Large optical nonlinearity of nanoantennas coupled to an epsilon-near-zero material. Nat. Photonics, 12, 79-83(2018).

    [227] Y. Yang et al. High-harmonic generation from an epsilon-near-zero material. Nat. Phys., 15, 1022-1026(2019).

    [228] C. Husko et al. Ultrafast all-optical modulation in GaAs photonic crystal cavities. Appl. Phys. Lett., 94, 021111(2009).

    [229] M. R. Shcherbakov et al. Ultrafast all-optical switching with magnetic resonances in nonlinear dielectric nanostructures. Nano Lett., 15, 6985-6990(2015).

    [230] S. Makarov et al. Tuning of magnetic optical response in a dielectric nanoparticle by ultrafast photoexcitation of dense electron–hole plasma. Nano Lett., 15, 6187-6192(2015).

    [231] G. Della Valle et al. Nonlinear anisotropic dielectric metasurfaces for ultrafast nanophotonics. ACS Photonics, 4, 2129-2136(2017).

    [232] M. R. Shcherbakov et al. Ultrafast all-optical tuning of direct-gap semiconductor metasurfaces. Nat. Commun., 8, 17(2017).

    [233] G. Grinblat et al. Efficient ultrafast all-optical modulation in a nonlinear crystalline gallium phosphide nanodisk at the anapole excitation. Sci. Adv., 6, eabb3123(2020).

    [234] R. Lemasters et al. Deep optical switching on subpicosecond timescales in an amorphous Ge metamaterial. Adv. Opt. Mater., 9, 2100240(2021).

    [235] M. R. Shcherbakov et al. Photon acceleration and tunable broadband harmonics generation in nonlinear time-dependent metasurfaces. Nat. Commun., 10, 1345(2019).

    [236] N. Karl et al. Frequency conversion in a time-variant dielectric metasurface. Nano Lett., 20, 7052-7058(2020).

    [237] X. Guo et al. Nonreciprocal metasurface with space–time phase modulation. Light Sci. Appl., 8, 123(2019).

    [238] S. A. Mann et al. Ultrafast optical switching and power limiting in intersubband polaritonic metasurfaces. Optica, 8, 606-613(2021).

    [239] N. Maccaferri et al. Nanoscale magnetophotonics. J. Appl. Phys., 127, 080903(2020).

    [240] A. Kirilyuk, A. V. Kimel, T. Rasing. Ultrafast optical manipulation of magnetic order. Rev. Mod. Phys., 82, 2731-2784(2010).

    [241] E. Beaurepaire et al. Ultrafast spin dynamics in ferromagnetic nickel. Phys. Rev. Lett., 76, 4250-4253(1996).

    [242] A. V. Kimel et al. Ultrafast non-thermal control of magnetization by instantaneous photomagnetic pulses. Nature, 435, 655-657(2005).

    [243] C. D. Stanciu et al. All-optical magnetic recording with circularly polarized light. Phys. Rev. Lett., 99, 047601(2007).

    [244] S. Mangin et al. Engineered materials for all-optical helicity-dependent magnetic switching. Nat. Mater., 13, 286-292(2014).

    [245] V. I. Belotelov et al. Enhanced magneto-optical effects in magnetoplasmonic crystals. Nat. Nanotechnol., 6, 370-376(2011).

    [246] V. I. Belotelov et al. Plasmon-mediated magneto-optical transparency. Nat. Commun., 4, 2128(2013).

    [247] I. Zubritskaya et al. Magnetic control of the chiroptical plasmonic surfaces. Nano Lett., 18, 302-307(2018).

    [248] A. Christofi et al. Giant enhancement of faraday rotation due to electromagnetically induced transparency in all-dielectric magneto-optical metasurfaces. Opt. Lett., 43, 1838-1841(2018).

    [249] L. Landau, E. Lifshitz. On the theory of the dispersion of magnetic permeability in ferromagnetic bodies. Phys. Z. Sowjetunion, 8, 153-164(1935).

    [250] T. Kampfrath et al. Coherent terahertz control of antiferromagnetic spin waves. Nat. Photonics, 5, 31-34(2011).

    [251] T. Kampfrath et al. Terahertz spin current pulses controlled by magnetic heterostructures. Nat. Nanotechnol., 8, 256-260(2013).

    [252] T. J. Huisman et al. Femtosecond control of electric currents in metallic ferromagnetic heterostructures. Nat. Nanotechnol., 11, 455-458(2016).

    [253] H. Qiu et al. Ultrafast spin current generated from an antiferromagnet. Nat. Phys., 17, 388-394(2021).

    [254] Z. Feng et al. Spintronic terahertz emitter. J. Appl. Phys., 129, 010901(2021).

    [255] A. A. Orlov et al. Controlling light with plasmonic multilayers. Photonics Nanostruct. Fundam. Appl., 12, 213-230(2014).

    [256] P. Moitra et al. Realization of an all-dielectric zero-index optical metamaterial. Nat. Photonics, 7, 791-795(2013).

    [257] A. R. Rashed et al. Hot electron dynamics in ultrafast multilayer epsilon-near-zero metamaterials. Phys. Rev. B, 101, 165301(2020).

    [258] S. Suresh et al. Enhanced nonlinear optical responses of layered epsilon-near-zero metamaterials at visible frequencies. ACS Photonics, 8, 125-129(2021).

    [259] J. N. Acharyya et al. Ultrafast nonlinear pulse propagation dynamics in metal–dielectric periodic photonic architectures. Adv. Mater. Interfaces, 8, 2100757(2021).

    [260] J. Kuttruff et al. Ultrafast all-optical switching enabled by epsilon-near-zero-tailored absorption in metal-insulator nanocavities. Commun. Phys., 3, 114(2020).

    [261] M. Habib et al. Controlling the plasmon resonance via epsilon-near-zero multilayer metamaterials. Nanophotonics, 9, 3637-3644(2020).

    [262] S. R. K. C. Indukuri et al. Ultrasmall mode volume hyperbolic nanocavities for enhanced light–matter interaction at the nanoscale. ACS Nano, 13, 11770-11780(2019).

    [263] S. R. K. Indukuri et al. WS2 monolayers coupled to hyperbolic metamaterial nanoantennas: Broad implications for light–matter-interaction applications. ACS Appl. Nano Mater., 3, 10226-10233(2020). https://doi.org/10.1021/acsanm.0c02186

    [264] N. Maccaferri et al. Enhanced nonlinear emission from single multilayered metal–dielectric nanocavities resonating in the near-infrared. ACS Photonics, 8, 512-520(2021).

    [265] J. Kuttruff et al. Magneto-optical activity in nonmagnetic hyperbolic nanoparticles. Phys. Rev. Lett., 127, 217402(2021).

    [266] R. Verre et al. Transition metal dichalcogenide nanodisks as high-index dielectric Mie nanoresonators. Nat. Nanotechnol., 14, 679-683(2019).

    [267] A. H. C. Neto et al. The electronic properties of graphene. Rev. Mod. Phys., 81, 109-162(2009).

    [268] J. R. Schaibley et al. Valleytronics in 2d materials. Nat. Rev. Mater., 1, 16055(2016).

    [269] J. You et al. Nonlinear optical properties and applications of 2d materials: theoretical and experimental aspects. Nanophotonics, 8, 63-97(2018).

    [270] S. Yu et al. 2D materials for optical modulation: challenges and opportunities. Adv. Mater., 29, 1606128(2017).

    [271] C. Poellmann et al. Resonant internal quantum transitions and femtosecond radiative decay of excitons in monolayer WSe2. Nat. Mater., 14, 889-893(2015). https://doi.org/10.1038/nmat4356

    [272] E. A. A. Pogna et al. Photo-induced bandgap renormalization governs the ultrafast response of single-layer MoS2. ACS Nano, 10, 1182-1188(2016). https://doi.org/10.1021/acsnano.5b06488

    [273] K. Wang et al. Ultrafast nonlinear excitation dynamics of black phosphorus nanosheets from visible to mid-infrared. ACS Nano, 10, 6923-6932(2016).

    [274] S. Ge et al. Dynamical evolution of anisotropic response in black phosphorus under ultrafast photoexcitation. Nano Lett., 15, 4650-4656(2015).

    [275] A. Autere et al. Nonlinear optics with 2d layered materials. Adv. Mater., 30, 1705963(2018).

    [276] Z. Nie et al. Ultrafast carrier thermalization and cooling dynamics in few-layer MoS2. ACS Nano, 8, 10931-10940(2014). https://doi.org/10.1021/nn504760x

    [277] N. Kumar et al. Second harmonic microscopy of monolayer MoS2. Phys. Rev. B, 87, 161403(2013). https://doi.org/10.1103/PhysRevB.87.161403

    [278] A. Säynätjoki et al. Ultra-strong nonlinear optical processes and trigonal warping in MoS2 layers. Nat. Commun., 8, 893(2017). https://doi.org/10.1038/s41467-017-00749-4

    [279] C. T. Le et al. Nonlinear optical characteristics of monolayer MoSe2. Ann. Phys., Lpz., 528, 551-559(2016). https://doi.org/10.1002/andp.201600006

    [280] C. Janisch et al. Extraordinary second harmonic generation in tungsten disulfide monolayers. Sci. Rep., 4, 5530(2014).

    [281] C. Torres-Torres et al. Third order nonlinear optical response exhibited by mono- and few-layers of WS2x. 2D Mater., 3, 021005(2016). https://doi.org/10.1088/2053-1583/3/2/021005

    [282] J. Ribeiro-Soares et al. Second harmonic generation in WSe2. 2D Mater., 2, 045015(2015). https://doi.org/10.1088/2053-1583/2/4/045015

    [283] G. Wang et al. Tunable nonlinear refractive index of two-dimensional MoS2, WS2, and MoSe2 nanosheet dispersions [invited]. Photonics Res., 3, A51-A55(2015). https://doi.org/10.1364/PRJ.3.000A51

    [284] J. Kern et al. Nanoantenna-enhanced light–matter interaction in atomically thin WS2x. ACS Photonics, 2, 1260-1265(2015). https://doi.org/10.1021/acsphotonics.5b00123

    [285] F. Spreyer et al. Second harmonic imaging of plasmonic pancharatnam-berry phase metasurfaces coupled to monolayers of WS2x. Nanophotonics, 9, 351-360(2020). https://doi.org/10.1515/nanoph-2019-0378

    [286] X. Chen et al. Resonance coupling in hybrid gold nanohole–monolayer WS2x nanostructures. Appl. Mater. Today, 15, 145-152(2019). https://doi.org/10.1016/j.apmt.2019.01.004

    [287] H. Chen et al. Enhanced second-harmonic generation from two-dimensional MoSe2 on a silicon waveguide. Light Sci. Appl., 6, e17060(2017). https://doi.org/10.1038/lsa.2017.60

    [288] S. Busschaert et al. Transition metal dichalcogenide resonators for second harmonic signal enhancement. ACS Photonics, 7, 2482-2488(2020).

    [289] X. Hong et al. Ultrafast charge transfer in atomically thin MoS2/WS2 heterostructures. Nat. Nanotechnol., 9, 682-686(2014). https://doi.org/10.1038/nnano.2014.167

    [290] F. Ceballos et al. Ultrafast charge separation and indirect exciton formation in a MoS2-MoSe2 van der Waals heterostructure. ACS Nano, 8, 12717-12724(2014). https://doi.org/10.1021/nn505736z

    [291] K. Wang et al. Interlayer coupling in twisted WSe2/WS2 bilayer heterostructures revealed by optical spectroscopy. ACS Nano, 10, 6612-6622(2016). https://doi.org/10.1021/acsnano.6b01486

    [292] H. Zhu et al. Interfacial charge transfer circumventing momentum mismatch at two-dimensional van der Waals heterojunctions. Nano Lett., 17, 3591-3598(2017).

    [293] C. Jin et al. Ultrafast dynamics in van der Waals heterostructures. Nat. Nanotechnol., 13, 994-1003(2018).

    Emanuele Galiffi, Romain Tirole, Shixiong Yin, Huanan Li, Stefano Vezzoli, Paloma A. Huidobro, Mário G. Silveirinha, Riccardo Sapienza, Andrea Alù, J. B. Pendry. Photonics of time-varying media[J]. Advanced Photonics, 2022, 4(1): 014002
    Download Citation