• Opto-Electronic Engineering
  • Vol. 49, Issue 3, 210368-1 (2022)
Wenzhe Xiao1, Jing Cheng2, Dawei Zhang1、*, Yong Kong3, Hualong Ye1, and Jun He1
Author Affiliations
  • 1School of Optical Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
  • 2Department of Materials Science, Fudan University, Shanghai 200433, China
  • 3School of Electronic and Electrical Engineering, Shanghai University of Engineering Science, Shanghai 201620, China
  • show less
    DOI: 10.12086/oee.2022.210368 Cite this Article
    Wenzhe Xiao, Jing Cheng, Dawei Zhang, Yong Kong, Hualong Ye, Jun He. High stability PGC demodulation technique for fiber-optic interferometric sensor[J]. Opto-Electronic Engineering, 2022, 49(3): 210368-1 Copy Citation Text show less
    Schematics of the PGC demodulation algorithm. (a) PGC-Arctan; (b) PGC-DCM; (c) PGC-SDD; (d) PGC-SDD-DSM
    Fig. 1. Schematics of the PGC demodulation algorithm. (a) PGC-Arctan; (b) PGC-DCM; (c) PGC-SDD; (d) PGC-SDD-DSM
    Demodulation signals of different PGC demodulation algorithms with C=1.5 rad, 2.0 rad, 2.5 rad, 3.0 rad and 3.5 rad. (a) PGC-SDD-DSM; (b) PGC-SDD; (c) PGC-Arctan; (d) PGC-DCM
    Fig. 2. Demodulation signals of different PGC demodulation algorithms with C=1.5 rad, 2.0 rad, 2.5 rad, 3.0 rad and 3.5 rad. (a) PGC-SDD-DSM; (b) PGC-SDD; (c) PGC-Arctan; (d) PGC-DCM
    Schematic of experimental setup
    Fig. 3. Schematic of experimental setup
    Original signal
    Fig. 4. Original signal
    Demodulation time domain results of different PGC algorithms when C=1.5 rad. (a) PGC-DCM; (b) PGC-Arctan; (c) PGC-SDD; (d) PGC-SDD-DSM
    Fig. 5. Demodulation time domain results of different PGC algorithms when C=1.5 rad. (a) PGC-DCM; (b) PGC-Arctan; (c) PGC-SDD; (d) PGC-SDD-DSM
    Frequency spectrums of the demodulation results of different PGC algorithms when C=1.5 rad. (a) PGC-DCM; (b) PGC-Arctan; (c) PGC-SDD; (d) PGC-SDD-DSM
    Fig. 6. Frequency spectrums of the demodulation results of different PGC algorithms when C=1.5 rad. (a) PGC-DCM; (b) PGC-Arctan; (c) PGC-SDD; (d) PGC-SDD-DSM
    THD of the proposed PGC algorithm with modulation depth C
    Fig. 7. THD of the proposed PGC algorithm with modulation depth C
    SINAD of the proposed PGC algorithm with modulation depth C
    Fig. 8. SINAD of the proposed PGC algorithm with modulation depth C
    Demodulated signal waveform (red) and original signal (blue)
    Fig. 9. Demodulated signal waveform (red) and original signal (blue)
    Demodulated signal waveform (green) and original signal (blue)
    Fig. 10. Demodulated signal waveform (green) and original signal (blue)
    Dynamic range of the demodulation system based on the PGC-SDD-DSM algorithm
    Fig. 11. Dynamic range of the demodulation system based on the PGC-SDD-DSM algorithm
    ParametersDemodulation formulaModulation depth(C) Light intensity disturbance(LID) Total harmonic distortion(THD)
    PGC-DCMSPGCDCM(t)=B2GHJ1(C)J2(C)φ(t)SensitiveSensitiveLow THD
    PGC-ArctanSPGCArctan(t)=arctan{[GJ1(C)HJ2(C)]tanφ(t)}SensitiveNon-sensitiveHigh THD
    PGC-SDDSPGCSDD(t)=[J1(C)/J2(C)]φ(t)SensitiveNon-sensitiveLow THD
    PGC-SDD-DSMSPGCSDDDSM=φ(t)Non-sensitiveNon-sensitiveLow THD
    Table 1. Comparisons of four PGC demodulation algorithms
    PGC-DCMPGC-ArctanPGC-SDDPGC-SDD-DSM
    SINAD/dB24.6911.3729.1835.56
    THD/ (%)0.0600.6900.0570.047
    Table 2. Performance comparison of demodulation results of four algorithms
    Wenzhe Xiao, Jing Cheng, Dawei Zhang, Yong Kong, Hualong Ye, Jun He. High stability PGC demodulation technique for fiber-optic interferometric sensor[J]. Opto-Electronic Engineering, 2022, 49(3): 210368-1
    Download Citation