• Acta Optica Sinica
  • Vol. 44, Issue 24, 2400001 (2024)
Zhonghui Tan1, Shuo Ma1,*, Chao Liu2,3,**, Weihua Ai1..., Tingting Ye1, Xianbin Zhao1, Shensen Hu1, Bo Li3, Miao Zhang3 and Wei Yan1|Show fewer author(s)
Author Affiliations
  • 1College of Meteorology and Oceanography, National University of Defense Technology, Changsha 410073, Hunan , China
  • 2Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters/China Meteorological Administration Aerosol-Cloud-Precipitation Key Laboratory, School of Atmospheric Physics, Nanjing University of Information Science & Technology, Nanjing 210044, Jiangsu , China
  • 3Innovation Center for Fengyun Meteorological Satellite (FYSIC), National Satellite Meteorological Center (National Center for Space Weather), Beijing 100081, China
  • show less
    DOI: 10.3788/AOS241024 Cite this Article Set citation alerts
    Zhonghui Tan, Shuo Ma, Chao Liu, Weihua Ai, Tingting Ye, Xianbin Zhao, Shensen Hu, Bo Li, Miao Zhang, Wei Yan. Research Progress in Cloud Base Height Retrieval Algorithms Based on Satellite Multi-Spectral Radiometer Imagers[J]. Acta Optica Sinica, 2024, 44(24): 2400001 Copy Citation Text show less
    References

    [1] Rossow W B, Lacis A A. Global, seasonal cloud variations from satellite radiance measurements. part II. cloud properties and radiative effects[J]. Journal of Climate, 3, 1204-1253(1990).

    [2] Sohn B J, Smith E A. The significance of cloud‒radiative forcing to the general circulation on climate time scales: a satellite interpretation[J]. Journal of the Atmospheric Sciences, 49, 845-860(1992).

    [3] Deng T, Zhang L, Chen M et al. The influence of high cloud and aerosol radiative effect on boundary layer[J]. Chinese Journal of Atmospheric Sciences, 34, 979-987(2010).

    [4] Sena E T, Mccomiskey A, Feingold G. A long-term study of aerosol‒cloud interactions and their radiative effect at a midlatitude continental site using ground-based measurements[J]. Atmospheric Chemistry and Physics, 16, 11301-11318(2016).

    [5] Talib J, Woolnough S J, Klingaman N P et al. The role of the cloud radiative effect in the sensitivity of the intertropical convergence zone to convective mixing[J]. Journal of Climate, 31, 6821-6838(2018).

    [6] Rosenfeld D, Zhu Y N, Wang M H et al. Aerosol-driven droplet concentrations dominate coverage and water of oceanic low-level clouds[J]. Science, 363, eaav0566(2019).

    [7] Scott R C, Myers T A, Norris J R et al. Observed sensitivity of low-cloud radiative effects to meteorological perturbations over the global oceans[J]. Journal of Climate, 33, 7717-7734(2020).

    [8] Barlakas V, Deneke H, Macke A. The sub-adiabatic model as a concept for evaluating the representation and radiative effects of low-level clouds in a high-resolution atmospheric model[J]. Atmospheric Chemistry and Physics, 20, 303-322(2020).

    [9] Kalisch J, Macke A. Radiative budget and cloud radiative effect over the Atlantic from ship-based observations[J]. Atmospheric Measurement Techniques, 5, 2391-2401(2012).

    [10] Lu X, Mao F Y, Rosenfeld D et al. Satellite retrieval of cloud base height and geometric thickness of low-level cloud based on CALIPSO[J]. Atmospheric Chemistry & Physics, 21, 11979-12003(2021).

    [11] Tan Z H, Ma S, Liu C et al. Retrieving cloud base height from passive radiometer observations via a systematic effective cloud water content table[J]. Remote Sensing of Environment, 294, 113633(2023).

    [12] Grant A L M, Dacre H F, Thomson D J et al. Horizontal and vertical structure of the Eyjafjallajökull ash cloud over the UK: a comparison of airborne lidar observations and simulations[J]. Atmospheric Chemistry and Physics, 12, 10145-10159(2012).

    [13] Xiong X L, Yan P, Jiang L H et al. Application of wind lidar in detection of the airport’s visibility and cloud base height[J]. Laser & Infrared, 40, 817-820(2010).

    [14] Tang Y J, Ma S Q, Yang L et al. Observation and comparison of cloud-base heights by ground-based Millimeter-wave cloud radar[J]. Journal of Applied Meteorological Science, 26, 680-687(2015).

    [15] Huo J, Lu D R, Duan S et al. Comparison of the cloud top heights retrieved from MODIS and AHI satellite data with ground-based Ka-band radar[J]. Atmospheric Measurement Techniques, 13, 1-11(2020).

    [16] Huo J, Li J, Duan M Z et al. Measurement of cloud top height: comparison of MODIS and ground-based millimeter radar[J]. Remote Sensing, 12, 1616(2020).

    [17] Winker D M, Pelon J, Coakley J A et al. The CALIPSO mission: a global 3D view of aerosols and clouds[J]. Bulletin of the American Meteorological Society, 91, 1211-1229(2010).

    [18] Stephens G L, Vane D G, Boain R J et al. The cloudsat mission and the a-train[J]. Bulletin of the American Meteorological Society, 83, 1771-1790(2002).

    [19] Powell A M, Jr, Weng F Z. Introduction to special section on Suomi National Polar-Orbiting Partnership satellite calibration, validation, and applications[J]. Journal of Geophysical Research: Atmospheres, 118, 12216-12217(2013).

    [20] Yang J, Zhang Z Q, Wei C Y et al. Introducing the new generation of Chinese geostationary weather satellites, Fengyun-4[J]. Bulletin of the American Meteorological Society, 98, 1637-1658(2017).

    [21] Min M, Wu C Q, Li C et al. Developing the science product algorithm testbed for Chinese next-generation geostationary meteorological satellites: Fengyun-4 series[J]. Journal of Meteorological Research, 31, 708-719(2017).

    [22] Hutchison K, Wong E, Ou S C. Cloud base heights retrieved during night-time conditions with MODIS data[J]. International Journal of Remote Sensing, 27, 2847-2862(2006).

    [23] Noh Y J, Forsythe J M, Miller S D et al. Cloud-base height estimation from VIIRS. part II: a statistical algorithm based on A-train satellite data[J]. Journal of Atmospheric and Oceanic Technology, 34, 585-598(2017).

    [24] Miller S D, Forsythe J M, Partain P T et al. Estimating three-dimensional cloud structure via statistically blended satellite observations[J]. Journal of Applied Meteorology and Climatology, 53, 437-455(2014).

    [25] Li J M, Yi Y H, Stamnes K et al. A new approach to retrieve cloud base height of marine boundary layer clouds[J]. Geophysical Research Letters, 40, 4448-4453(2013).

    [26] Zhu Y N, Rosenfeld D, Yu X et al. Satellite retrieval of convective cloud base temperature based on the NPP/VIIRS Imager[J]. Geophysical Research Letters, 41, 1308-1313(2014).

    [27] Lin H, Li Z L, Li J et al. Estimate of daytime single-layer cloud base height from advanced baseline imager measurements[J]. Remote Sensing of Environment, 274, 112970(2022).

    [28] Lu F, Zhang X H, Chen B Y et al. FY-4 geostationary meteorological satellite imaging characteristics and its application prospects[J]. Journal of Marine Meteorology, 37, 1-12(2017).

    [29] Salomonson V V, Barnes W L, Maymon P W et al. MODIS: advanced facility instrument for studies of the Earth as a system[J]. IEEE Transactions on Geoscience and Remote Sensing, 27, 145-153(1989).

    [30] Platnick S, King M D, Ackerman S A et al. The MODIS cloud products: algorithms and examples from Terra[J]. IEEE Transactions on Geoscience and Remote Sensing, 41, 459-473(2003).

    [31] Lee T E, Miller S D, Turk F J et al. The NPOESS VIIRS day/night visible sensor[J]. Bulletin of the American Meteorological Society, 87, 191-200(2006).

    [32] Zhang W C, Liu J, Xu N et al. Evaluation of daily mean OLR by combining FY-3 dual-satellites[J]. National Remote Sensing Bulletin, 28, 2600-2610(2024).

    [33] Sullivan P, Krimchansky A, Walsh T. An overview of the design and development of the geostationary operational environmental satellite R-series (GOES-R) space segment[EB/OL]. https:∥ntrs.nasa.gov/citations/20170009466

    [34] Bessho K, Date K J, Hayashi M et al. An introduction to himawari-8/9: Japan’s new-generation geostationary meteorological satellites[J]. Journal of the Meteorological Society of Japan Ser II, 94, 151-183(2016).

    [35] Iwabuchi H, Putri N S, Saito M et al. Cloud property retrieval from multiband infrared measurements by himawari-8[J]. Journal of the Meteorological Society of Japan Ser II, 96B, 27-42(2018).

    [36] DISORTStamnes K.. a general-purpose fortran program for discrete-ordinate-method radiative transfer in scattering and emitting layered media: documentation of methodology[EB/OL]. https:∥www.libradtran.org/lib/exe/fetch.php?media=disortreport1.1.pdf

    [37] Guo Z X, Kumar S. Three-dimensional discrete ordinates method in transient radiative transfer[J]. Journal of Thermophysics and Heat Transfer, 16, 289-296(2002).

    [38] Gjerstad K I, Stamnes J J, Hamre B et al. Monte Carlo and discrete-ordinate simulations of irradiances in the coupled atmosphere-ocean system[J]. Applied Optics, 42, 2609-2622(2003).

    [39] Sourdeval O, Labonnote L C, Baran A J et al. A methodology for simultaneous retrieval of ice and liquid water cloud properties. Part 2: Near-global retrievals and evaluation against A-Train products[J]. Quarterly Journal of the Royal Meteorological Society, 142, 3063-3081(2016).

    [40] Coddington O M, Vukicevic T, Schmidt K S et al. Characterizing the information content of cloud thermodynamic phase retrievals from the notional PACE OCI shortwave reflectance measurements[J]. Journal of Geophysical Research: Atmospheres, 122, 8079-8100(2017).

    [41] Collins W D. Parameterization of generalized cloud overlap for radiative calculations in general circulation models[J]. Journal of the Atmospheric Sciences, 58, 3224-3242(2001).

    [42] Chang F L, Li Z Q. A near-global climatology of single-layer and overlapped clouds and their optical properties retrieved from terra/MODIS data using a new algorithm[J]. Journal of Climate, 18, 4752-4771(2005).

    [43] Tian L, Curry J A. Cloud overlap statistics[J]. Journal of Geophysical Research: Atmospheres, 94, 9925-9935(1989).

    [44] Yuan T L, Oreopoulos L. On the global character of overlap between low and high clouds[J]. Geophysical Research Letters, 40, 5320-5326(2013).

    [45] Li J M, Yi Y H, Minnis P et al. Radiative effect differences between multi-layered and single-layer clouds derived from CERES, CALIPSO, and CloudSat data[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 112, 361-375(2011).

    [46] Marchant B, Platnick S, Meyer K et al. Evaluation of the MODIS Collection 6 multilayer cloud detection algorithm through comparisons with CloudSat Cloud Profiling Radar and CALIPSO CALIOP products[J]. Atmospheric Measurement Techniques, 13, 3263-3275(2020).

    [47] Tan Z H, Ma S, Zhao X B et al. Evaluation of cloud top height retrievals from China’s next-generation geostationary meteorological satellite FY-4A[J]. Journal of Meteorological Research, 33, 553-562(2019).

    [48] Teng S W, Liu C, Zhang Z B et al. Retrieval of ice-over-water cloud microphysical and optical properties using passive radiometers[J]. Geophysical Research Letters, 47, GL088941(2020).

    [49] Watts P D, Bennartz R, Fell F. Retrieval of two-layer cloud properties from multispectral observations using optimal estimation[J]. Journal of Geophysical Research: Atmospheres, 116, D16203(2011).

    [50] Forsythe J M, Vonder Haar T H, Reinke D L. Cloud-base height estimates using a combination of meteorological satellite imagery and surface reports[J]. Journal of Applied Meteorology, 39, 2336-2347(2000).

    [51] Barker H W, Jerg M P, Wehr T et al. A 3D cloud-construction algorithm for the EarthCARE satellite mission[J]. Quarterly Journal of the Royal Meteorological Society, 137, 1042-1058(2011).

    [52] Hutchison K D. The retrieval of cloud base heights from MODIS and three-dimensional cloud fields from NASA’s EOS Aqua mission[J]. International Journal of Remote Sensing, 23, 5249-5265(2002).

    [53] Seaman C J, Noh Y J, Miller S D et al. Cloud-base height estimation from VIIRS. part I: operational algorithm validation against CloudSat[J]. Journal of Atmospheric and Oceanic Technology, 34, 567-583(2017).

    [54] Min M, Li J, Wang F et al. Retrieval of cloud top properties from advanced geostationary satellite imager measurements based on machine learning algorithms[J]. Remote Sensing of Environment, 239, 111616(2020).

    [55] Jeppesen J H, Jacobsen R H, Inceoglu F et al. A cloud detection algorithm for satellite imagery based on deep learning[J]. Remote Sensing of Environment, 229, 247-259(2019).

    [56] Kim M, Cermak J, Andersen H et al. A new satellite-based retrieval of low-cloud liquid-water path using machine learning and meteosat SEVIRI data[J]. Remote Sensing, 12, 3475(2020).

    [57] Tan Z H, Ma S, Han D et al. Estimation of cloud base height for FY-4A satellite based on random forest algorithm[J]. Journal of Infrared and Millimeter Waves, 38, 381(2019).

    [58] Wang Q, Zhou C, Letu H S et al. Obtaining cloud base height and phase from thermal infrared radiometry using a deep learning algorithm[J]. IEEE Transactions on Geoscience and Remote Sensing, 61, 4105914(2023).

    [59] Tan Z H, Ma S, Liu C et al. Assessing overlapping cloud top heights: an extrapolation method and its performance[J]. IEEE Transactions on Geoscience and Remote Sensing, 60, 4107811(2022).

    [60] Tan Z H, Liu C, Ma S et al. Detecting multilayer clouds from the geostationary advanced himawari imager using machine learning techniques[J]. IEEE Transactions on Geoscience and Remote Sensing, 60, 4103112(2022).

    Zhonghui Tan, Shuo Ma, Chao Liu, Weihua Ai, Tingting Ye, Xianbin Zhao, Shensen Hu, Bo Li, Miao Zhang, Wei Yan. Research Progress in Cloud Base Height Retrieval Algorithms Based on Satellite Multi-Spectral Radiometer Imagers[J]. Acta Optica Sinica, 2024, 44(24): 2400001
    Download Citation