[1] D. Kim, H. Choi, T. Brendel, H. Quach, M. Esparza, H. Kang, Y. Feng, J. N. Ashcraft, X. Ke, T. Wang, E. S. Douglas. Advances in optical engineering for future telescopes. Opto-Electron. Adv., 4, 210040(2021).
[2] H. Chang, X. Yin, H. Yao, J. Wang, R. Gao, X. Xin, M. Guizani. Adaptive optics compensation for orbital angular momentum optical wireless communications. IEEE Trans. Wireless Commun., 21, 11151-11163(2022).
[3] C. Rodríguez, A. Chen, J. A. Rivera, M. A. Mohr, Y. Liang, R. G. Natan, W. Sun, D. E. Milkie, T. G. Bifano, X. Chen, N. Ji. An adaptive optics module for deep tissue multiphoton imaging in vivo. Nat. Methods, 18, 1259-1264(2021).
[4] Y. Guo, L. Zhong, L. Min, J. Wang, Y. Wu, K. Chen, K. Wei, C. Rao. Adaptive optics based on machine learning: a review. Opto-Electron. Adv., 5, 200082(2022).
[5] M. A. M. van Kooten, N. Doelman, M. Kenworthy. Robustness of prediction for extreme adaptive optics systems under various observing conditions: an analysis using VLT/sphere adaptive optics data. Astron. Astrophys., 636, A81(2020).
[6] M. Salama, J. Ou, C. Baranec, M. C. Liu, B. P. Bowler, P. Barnes, M. Bonnet, M. Chun, D. A. Duev, S. Goebel. Large adaptive optics survey for substellar objects around young, nearby, low-mass stars with robo-AO. Astron. J., 162, 102(2021).
[7] I. Toselli, S. Gladysz. Improving system performance by using adaptive optics and aperture averaging for laser communications in oceanic turbulence. Opt. Express, 28, 17347-17361(2020).
[8] M. B. Jorgenson, G. J. M. Aitken. Prediction of atmospherically induced wave-front degradations. Opt. Lett., 17, 466-468(1992).
[9] M. Van Kooten, N. Doelman, M. Kenworthy. Impact of time-variant turbulence behavior on prediction for adaptive optics systems. J. Opt. Soc. Am. A, 36, 731-740(2019).
[10] K. Jackson, C. Correia, O. Lardière, D. Andersen, C. Bradley. Linear prediction of atmospheric wave-fronts for tomographic adaptive optics systems: modelling and robustness assessment. Opt. Lett., 40, 143-146(2015).
[11] C. Liu, L. Hu, Z. Cao, Q. Mu, L. Xuan. Modal prediction of atmospheric turbulence wavefront for open-loop liquid-crystal adaptive optics system with recursive least-squares algorithm. Opt. Commun., 285, 238-244(2012).
[12] L. A. Poyneer, B. A. Macintosh, J. P. Véran. Fourier transform wavefront control with adaptive prediction of the atmosphere. J. Opt. Soc. Am. A, 24, 2645-2660(2007).
[13] X. Liu, T. Morris, C. Saunter, F. J. de Cos Juez, C. González-Gutiérrez, L. Bardou. Wavefront prediction using artificial neural networks for open-loop adaptive optics. Mon. Not. R. Astron. Soc., 496, 456-464(2020).
[14] Y. Chen. LSTM recurrent neural network prediction algorithm based on Zernike modal coefficients. Optik, 203, 163796(2020).
[15] Y. Chen. Voltages prediction algorithm based on LSTM recurrent neural network. Optik, 220, 164869(2020).
[16] S. Hochreiter, J. Schmidhuber. Long short-term memory. Neural Comput., 9, 1735-1780(1997).
[17] J. G. Chen, V. Shah, L. Liu. Performance of a U-Net-based neural network for predictive adaptive optics. Opt. Lett., 46, 2513-2516(2021).
[18] X. Shi, Z. Chen, H. Wang, D. Y. Yeung, W. K. Wong, W. C. Woo. Convolutional LSTM network: a machine learning approach for precipitation nowcasting. Proceedings of the 28th International Conference on Neural Information Processing Systems (NIPS), 802-810(2015).
[19] R. Swanson, M. Lamb, C. M. Correia, S. Sivanandam, K. Kutulakos. Closed loop predictive control of adaptive optics systems with convolutional neural networks. Mon. Not. R. Astron. Soc., 503, 2944-2954(2021).
[20] J. Wu, J. Tang, M. Zhang, J. Di, L. Hu, X. Wu, G. Liu, J. Zhao. PredictionNet: a long short-term memory-based attention network for atmospheric turbulence prediction in adaptive optics. Appl. Opt., 61, 3687-3694(2022).
[21] K. Wang, M. Zhang, J. Tang, L. Wang, L. Hu, X. Wu, W. Li, J. Di, G. Liu, J. Zhao. Deep learning wavefront sensing and aberration correction in atmospheric turbulence. PhotoniX, 2, 8(2021).
[22] J. Tang, J. Zhang, S. Zhang, S. Mao, Z. Ren, J. Di, J. Zhao. Phase aberration compensation via a self-supervised sparse constraint network in digital holographic microscopy. Opt. Laser Eng., 168, 107671(2023).
[23] C. Lee, G. Song, H. Kim, J. C. Ye, M. Jang. Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data. Nat. Mach. Intell., 5, 35-45(2023).
[24] R. J. Noll. Zernike polynomials and atmospheric turbulence. J. Opt. Soc. Am., 66, 207-211(1976).
[25] G. Dai. Modal wave-front reconstruction with Zernike polynomials and Karhunen–Loève functions. J. Opt. Soc. Am. A, 13, 1218-1225(1996).
[26] Z. Wu, S. Pan, G. Long, J. Jiang, X. Chang, C. Zhang. Connecting the dots: multivariate time series forecasting with graph neural networks. Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, 753-763(2020).
[27] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, E. Dumitru, V. Vincent, A. Rabinovich. Going deeper with convolutions. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 1-9(2015).
[28] R. Conan, C. Correia. Object-oriented Matlab adaptive optics toolbox. Proc. SPIE, 9148, 91486C(2014).