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The time-delay problem, which is introduced by the response time of hardware for correction, is a critical and non-
ignorable problem of adaptive optics (AO) systems. It will result in significant wavefront correction errors while
turbulence changes severely or system responses slowly. Predictive AO is proposed to alleviate the time-delay problem
for more accurate and stable corrections in the real time-varying atmosphere. However, the existing prediction ap-
proaches either lack the ability to extract non-linear temporal features, or overlook the authenticity of spatial features
during prediction, leading to poor robustness in generalization. Here, we propose a mixed graph neural network
(MGNN) for spatiotemporal wavefront prediction. The MGNN introduces the Zernike polynomial and takes its
inherent covariance matrix as physical constraints. It takes advantage of conventional convolutional layers and graph
convolutional layers for temporal feature catch and spatial feature analysis, respectively. In particular, the graph con-
straints from the covariance matrix and the weight learning of the transformationmatrix promote the establishment of
a realistic internal spatial pattern from limited data. Furthermore, its prediction accuracy and robustness to varying
unknown turbulences, including the generalization from simulation to experiment, are all discussed and verified.
In experimental verification, the MGNN trained with simulated data can achieve an approximate effect of that trained
with real turbulence. By comparing it with two conventional methods, the demonstrated performance of the proposed
method is superior to the conventional AO in terms of root mean square error (RMS). With the prediction of the
MGNN, the mean and standard deviation of RMS in the conventional AO are reduced by 54.2% and 58.6% at most,
respectively. The stable prediction performance makes it suitable for wavefront predictive correction in astronomical
observation, laser communication, and microscopic imaging. © 2023 Chinese Laser Press

https://doi.org/10.1364/PRJ.497909

1. INTRODUCTION

Adaptive optics (AO), which can compensate wavefront distor-
tions, has wide applications in astronomical observation [1], laser
communication [2], and biological imaging [3]. For a typical AO
system, a wavefront sensor (WFS) measures the wavefront dis-
torted by atmospheric turbulence, and a controller converts the
distorted wavefront into the voltage of a deformable mirror (DM)
for correction. According to the phase conjugate principle, the
subsequent wavefront is compensated by the DM immediately

in a closed-loop correction [4]. However, the AO system always
has a time delay between the measurement and compensation,
due to the conversion and transmission of measured signals, as
well as the response of the DM. Generally, the time lapse is
<20 ms, which is basically equivalent to two to three captured
frames of the WFS [5]. Therefore, the wavefront correction mis-
match will significantly increase correction errors, especially when
the turbulence changes rapidly. Facing some ever-changing turbu-
lence scenarios, such as fast-moving orbital objects and high-speed
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laser communication, it is more essential and critical to alleviate
the time-delay problem for stable performance [6,7]. Hence, the
predictive AO technique, which predicts future wavefronts from
earlier ones, is proposed to cover the delayed time for synchronous
correction.

Although the evolution of turbulence is random and unpre-
dictable on a long-term scale, it is still continuous and predictable
within a short time interval. Its statistical temporal characteristics
appear to be particularly important in predictive AO. Since
Jorgenson and Aitken demonstrated the predictability of atmos-
pheric wavefront [8], many prediction methods have been pro-
posed to improve the prediction accuracy. Current approaches
can be categorized into two groups: linear and non-linear. Linear
prediction (LP) algorithms, such as the linear minimum mean
square error (LMMSE), were investigated first based on the stat-
istical knowledge of atmosphere [9,10]. By establishing the lin-
ear equations between the previous and future wavefronts, the
corresponding transfer matrix for distortion compensation can be
calculated quickly [11]. However, the matrix is constant and
hence it cannot be used to correct the dynamic atmospheric tur-
bulence. Therefore, it needs recalculation when the atmospheric
conditions change, resulting in its inapplicability for real applica-
tions. Another Fourier transform prediction in LP algorithms [12]
is established based on Taylor’s frozen flow hypothesis. It needs to
dynamically monitor the windspeed along the propagation path,
increasing the complexity of the AO system. Overall, these LP
algorithms are difficult to handle the non-linear relationships of
turbulence, keeping them away from optimal performance.

In contrast, non-linear prediction algorithms, which are al-
ways machine-learning-based, extract the non-linear features
to improve accuracy of prediction. They are mainly divided into
two types: time-series prediction and spatiotemporal prediction.
The former applies to multivariate data on time series, such as
the wavefront slope [13], Zernike coefficients [14], and DM
voltage [15]. Noteworthy, the multi-layer perceptron (MLP)
has been explored for turbulence prediction since 1992 [8].
However, the MLP overly focused on the regression fitting and
relatively ignored the continuity of temporal features. More re-
cent long short-term memory (LSTM) can partially make up
for this weakness [16]. Disappointingly, the lack of spatial
constraints causes the distribution of prediction not to match
the true wavefront. Comparatively, spatiotemporal prediction
algorithms pay more attention to spatial features, and the con-
ventional convolutions are useful to deal with the structured dis-
crete signals. The well-known convolutional neural network
(CNN) is involved in dealing with sequential wavefront phases
for better corrections. Chen et al. established a U-shaped CNN
to predict subsequent eight frames [17]. Swanson et al. used
the convolutional LSTM to extract the temporal and spatial fea-
tures simultaneously and improved the Strehl ratio by over 55%
compared with classical methods [18,19]. In our previous work,
we upgraded the convolutional LSTM with the attention struc-
ture, and reduced the phase error of conventional AO by 80%

at most in one-frame correction [20]. However, the distribution
of convolutional output only follows the statistical spatial pat-
terns from limited data. For prediction applications, it may be
inadequate and may not conform to the real turbulence due to
the lack of physical constraints. Taking the two-dimensional
wavefront phase as input also greatly increases the computational
complexity of prediction. In addition, the prediction robustness
to various data still needs to be verified and further enhanced,
which is crucial but seldom reported previously.

To deal with the time-delay problem in AO, inspired by the
widely used deep learning [21–23], we propose a highly robust
spatiotemporal wavefront prediction algorithm with the mixed
graph neural network (MGNN) in predictive AO. To better
extract and utilize the spatiotemporal non-linear features of
turbulence, the temporal feature catcher (TFC) and spatial fea-
ture analyzer (SPA) are both designed. In the feature extraction
process, conventional convolution is no longer applicable to
graph structure, so the graph convolution is introduced in the
structure. Innovatively, we delve into the Zernike model and
discover the consistency between the covariance matrix of co-
efficients and the graph structure. The covariance matrix is a
statistical invariant in the real time-varying atmosphere and re-
veals the relationship between Zernike coefficients of real tur-
bulence. Therefore, we incorporate the consistency to promote
graph constraints of the covariance matrix and weight learning
of the transformation matrix internally. With the optimization
of graph structure, the MGNN can learn more spatial features
than common networks from limited data and can generate
output with high resemblance to real turbulence. The predic-
tion accuracy of the MGNN and the robustness to varying
atmospheric conditions, including the generalization from sim-
ulation to experiment, are discussed and verified. In experimen-
tal verification, the MGNN trained with simulated data can
achieve an approximate effect of that trained with real turbu-
lence. As a result, our proposed algorithm can achieve lower
correction error and better robustness than conventional pre-
dictive AO algorithms, let alone conventional AO.

2. PRINCIPLE

A. Covariance Matrix of Zernike Polynomial Model
According to the Zernike polynomial, the wavefront phase
measured by the WFS can be expressed as

φ�t� �
Xm
j

aj�t�Z j � A · Z, (1)

where m is the total orders of polynomials to describe the wave-
front, Z j is the jth Zernike polynomial, aj is the corresponding
coefficient varying with time t, A � �a1, a2,…, am� is the co-
efficient vector, and Z � �Z 1,Z 2,…,Zm�T is the polynomial
vector. According to Noll’s derivation [24], the covariance value
between any two coefficients aw and av in A of one frame can
be expressed as

E�aw, av� �
δK wv�Zw,Zv�Γ��nw � nv − 5∕3�∕2��D∕r0�5∕3

Γ��nw − nv � 17∕3�∕2�Γ��nv − nw � 17∕3�∕2�Γ��nw � nv � 23∕3�∕2� , (2)
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where δ is the covariance parameter with a value of 0 or 1, K wv
is the frequency characteristic factor depending on the polyno-
mial terms Zw and Zv, nw and nv are the radial orders of Zw
and Zv, D is the optical diameter of system, r0 is the Fried
parameter of atmosphere, and Γ�·� is the gamma function.
According to Eq. (2), the coefficients are statistically correlated,
and depend on each other. Thus, ignoring the piston term
Z 1, the covariance matrix C of Zernike coefficients can be
expressed as

C � E�AT · A� �

2
66664

E�a2, a2� 0 … 0

0 E�a3, a3� … E�aw, av�
..
. ..

. ..
.

0 E�av, aw� … E�am, am�

3
77775:

(3)

Ignoring the scaling factor �D∕r0�5∕3 in Eq. (2), C is a
statistical invariant between these Zernike coefficients from
turbulence. The elements of its off-diagonal are non-zero, and
the complete representation is in Appendix A. The relevance of
coefficients is non-negligible, but it does not meet our expect-
ations because it makes the coefficients prediction more com-
plex. Therefore, we introduce the Karhunen–Loève (K-L)
functions [25], and the wavefront phase of one frame can
be also expressed as

φ �
Xm
i

biK i � B · K, (4)

K i �
X
j

V ijZ j, (5)

where bi is the random coefficient varying independently, and
K i is the ith K-L polynomial, which can be expanded as
Eq. (5). B and K are corresponding vectors like A and Z.
Consequently, according to Eqs. (1), (4), and (5), we can

get the desired coefficient vector A from the independent
vector B and the transformation matrix V as

A � B · V: (6)

Specifically, the covariance matrix S � E�BT · B� is a diago-
nal matrix due to the independence of elements and has a
relationship with C as S � VCVT .

B. Spatiotemporal Wavefront Prediction Model
In the predictive AO system, we can get a sequence of coeffi-
cient vectors fAd �1�,Ad �2�,…,Ad �t�g over time easily by the
WFS. These time-continuous vectors of historical wavefronts
form the inputs of the prediction algorithm, and the prediction
model can be expressed as

Ap�t0 � F � � f �Ad �t0 − G � 1�,…,Ad �t0��, (7)

Âp � arg min
X

jAf �t0 � F � − Ap�t0 � F�j, (8)

where f �·� represents the prediction algorithm, Ap is the pre-
dicted vector, Ad and Af are vectors of measured and future
wavefronts, G is the number of frames for input, t0 is the
present moment, and t0 � F is the predicted moment. The
time t is represented and divided by the captured frames of
the WFS.

According to the prediction model, we establish the flow-
chart of spatiotemporal wavefront prediction in Fig. 1. In fact,
we can only collect the continuous turbulence for a while and
separate them into Ad and Af based on different moments for
optimization. These separated vectors are paired one by one
and assembled to compose the training dataset in Fig. 1(a). For
predictive AO, its prediction timespan G must cover the time
delay of measurement and correction, and the calculation delay
of the algorithm. For an AO system with a frame rate of hun-
dreds of hertz, the actual response time is often 2–3 times of
the sampling period of a camera. In other words, its time delay
is two to three frames, so we set F � 3 in our algorithm for

Fig. 1. Flowchart of spatiotemporal wavefront prediction. (a) Training dataset configuration. (b) Graph embedding from the covariance matrix of
coefficients. (c) In the testing process, Zernike coefficients of previous 10 frames are inputs, and the predicted coefficients are obtained by the trained
MGNN.

1804 Vol. 11, No. 11 / November 2023 / Photonics Research Research Article



prediction and compensation. The number of previous frames
is set as G � 10 for balance, because more frames represent
larger data volume and longer processing time. According to
Eq. (3), the covariance matrix C, which is highly similar to the
adjacency matrix of a graph, represents the connections be-
tween coefficients. So, we can regard coefficients as nodes and
describe their connections with edges in a graph. In Fig. 1(b),
the graph embedding is performed from the covariance matrix
C, applying physical constraints to the predicted coefficients in
the MGNN. The graph embedding process is expressed as

M �
�
1�

X
j

Cij

�
−1

�C� I�, (9)

where I is a unity matrix, and M is the adjacency matrix of the
initial graph. After full optimization of the MGNN, we take
vectors of previous 10 frames as inputs for testing, and its out-
puts are the predicted coefficients of future third frame, which
can be used for wavefront correction. In short, the MGNN
consists of two parts: conventional convolutional layers and
graph convolutional layers [26]. The former wholly catches
temporal features, while the latter comprehensively analyzes
spatial features. Therefore, the proposed MGNN fully utilizes
spatiotemporal characteristics of limited data for wavefront
prediction.

C. Mixed Graph Neural Network
The architecture of the MGNN is presented in Fig. 2. Input
tensors of size (B, C , W , H ) are successively processed by the
start convolutional layer, TFC, SFA, and end convolutional
layer in Fig. 2(a). The start and end convolutional layers
consist of several conventional convolutional operations with
1 × 1 kernel. B, C , W , and H are the batch size, channel,
width, and height of the tensors (B � 32, C � 1, W � 14,

and H � 10). The width W depends on the orders of poly-
nomials to describe one-frame wavefront, and the height H de-
pends on the number of previous frames G before. In Fig. 2(b),
the TFC applies two branches of inception units to extract
high-level temporal features. Inspired by GoogleNet [27], the
inception unit combines four convolutional operations with
different receptive fields for discovering different temporal pat-
terns. One branch is followed by a “tanh” activation function,
while the other takes “sigmoid” to control information flow
like the gate function in the LSTM [18]. The inception
unit is repeated five times in succession while Fig. 2(b) only
presents one. These features fuse together after calculating
Hadamard’s product. With different receptive fields, the TFC
can extract the characteristics as a whole from the coefficient
tensors of previous frames, and predict the future coefficients
based on temporal information. However, the predicted fea-
tures of the TFC may not be real or effective, due to the
assumption of coefficient independence in the TFC. It is nec-
essary to modulate the predicted features reasonably, so we pro-
pose the SFA in Fig. 2(c). The SFA also applies two branches
of graph units to optimize spatial features. With the adjacent
matrix M in Eq. (9), one branch of the graph unit layer can be
expressed as

�
F�i� � βFin � �1 − β�M · F�i−1�, i � 1, 2,…, k

F�0� � Fin, i � 0
, (10)

where k is the depth of the layer, Fin is the input feature of this
layer, β is a hyperparameter to control ratio, and “·” is matrix
multiplication. All features F�i� are concatenated together, and
then a linear layer is created to get the output feature of this
graph convolutional layer given by

Fig. 2. Network architecture of the MGNN. (a) Overall framework. (b) Details of temporal feature catcher. (c) Details of spatial feature analyzer.
(C , W , H ) are channel, width, and height, respectively.
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Fout �
Xk
i

F�i�W�i�, (11)

where the weight W�i� is trainable for filtering and transform-
ing. The other branch is similar, except for replacingM with its
transpose MT . The output features of two branches are added
for the next TFC. The spatial wavefront is represented by
Zernike coefficients, so the optimization of spatial features
can be achieved by adjusting these coefficients. The modules
including the TFC and SFA are also implemented five times
in succession. All features from the start layer, TFCs and SFAs
are adjusted by 1 × 1 convolutional operation and added to-
gether for long residual connections.

Specifically, the architecture design of the MGNN is unique
and innovative, leaving aside the details of data flow. From pre-
vious related works, a satisfactory prediction algorithm requires
non-linear fitting ability and spatiotemporal feature extraction
ability for accurate prediction, and sufficient parameter capacity
and information modeling ability for robust generalization.
However, existing algorithms, including state-of-the-art deep
learning-based ones, focus more on accurate prediction with
similar data, leading to poor generalization performance in vari-
ous environments. Limited data for training cannot cover all
variations of turbulence, so it is implausible to predict unfamil-
iar turbulence only with data-driven learning. Indeed, the pre-
diction accuracy within limited data can be improved by special
structures with enough training, but the generalization capabil-
ity needs the introduction of physical rules for further enhance-
ment, which was never considered before. Although lots of
networks utilize spatiotemporal information in prediction, they
essentially assume that all elements are independent, which is
different from the distribution of real atmosphere. In the
MGNN, Zernike polynomials are introduced to reduce data
dimensions and export covariance matrix. The concept of graph
is introduced due to its high consistency with the covariance

matrix. The derived adjacency matrix can emphasize the rel-
evant coefficients in iterative optimization, while others are not
affected because this matrix is highly sparse. Further, the weight
W�i� also plays an important role in transforming these coef-
ficients, just like the transformation matrix V in Eq. (6). They
add physical constraints to spatial features, making output
closer to the real turbulence statistically. For temporal features,
one catcher has fewer parameters because of the dimension re-
duction of wavefront with the Zernike model. As a result, our
proposed MGNN is applicable to the accurate prediction of
various atmospheric environments, because it builds a general
mapping relationship within limited data.

D. Data Preparation
Figure 3(a) shows the optical setup model of the AO system,
and Fig. 3(b) represents differences between conventional and
predictive AO systems in a closed-loop wavefront correction.
In an AO system, the collimated laser goes through the atmos-
pheric turbulence, so its wavefront is disturbed. The distorted
wavefront is measured and demodulated by the WFS, and the
corresponding control voltages of the DM, Zernike coeffi-
cients, and phase distribution of wavefront are obtained. The
conventional AO directly sends the control voltages to the DM
for correction with an inevitable time delay. The predictive AO
utilizes these above measured signals for prediction with algo-
rithms, and the predicted signals, representing the future wave-
front, are sent to the DM for correction. The subsequent data
acquisition and analysis both follow these two figures, includ-
ing the simulation and experiment.

To get the training dataset in Fig. 1(a), the object-oriented
MATLAB adaptive optics model is developed to effectively sim-
ulate the AO system under different conditions [28]. In sim-
ulation, a simple wavefront measurement system in Fig. 3(c) is
created, which consists of a point source at infinity, an atmos-
pheric medium, and a WFS. The light from a point source at
infinity goes through the atmospheric medium and is measured

Fig. 3. (a) Optical setup model of the AO system. TGP, turbulence generating pool; WFS, wavefront sensor; DM, deformable mirror. (b) Data
flow of conventional AO (gray lines) and predictive AO (blue lines). (c) Simulated atmospheric turbulence measuring process.
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by a WFS. The WFS has a 16 × 16 microlens array, a resolu-
tion of 128 × 128 pixels, and a measurement frame rate of
600 Hz. Three large random phase screens implement-
ing the von Kármán statistics are generated within the at-
mosphere medium. These phase screens are distributed at
transmission altitudes of [0, 4, 10] km with Taylor’s hypothesis.
The Fried parameter r0 of the phase screens follows the normal
distributions as Nr(15, 2) cm, and the windspeed w is
�5� 2.5, 10� 5, 20� 10� m∕s for the training dataset. The
wind directions are sampled randomly from �0, 2π� rad.
These phase screens shift randomly with the given windspeed.
In each frame measurement, partial phase screens are integrated
along the light propagation path and ultimately measured
by the WFS. At last, we get the Zernike coefficients of
8000 frames wavefront for training. According to the predic-
tion model, the first 10 frames are used as inputs, and the
13th frame is used as the label. The output of the MGNN
is the Zernike coefficient of one-frame wavefront phase, so
its orders can be adjusted according to actual needs. In the
distortion of turbulence, low-order aberrations dominate and
can be effectively represented by the Zernike model. Therefore,
coefficients of 2–15 orders Zernike polynomial are used to re-
present the wavefront here for verification, and more orders are
also feasible with similar performance. Coefficients of all test
sets are normalized by the same rule as in the training set in
advance and are restored after prediction.

To verify the prediction accuracy of the algorithms, we gen-
erate additional coefficients of 2000 frames under the same
condition as test set 1. To study the robustness to varying
atmospheric environments, we also generate another four test
sets with 2000 frames. For example, the windspeed is changed
as �10� 2.5, 15� 5, 25� 10� m∕s in test set 2, and the
Fried parameter is changed as Nr (5, 2) cm, Nr(10, 2) cm,
and Nr (20, 2) cm, in test sets 3, 4, and 5, respectively.

Furthermore, the experimental data is also considered to
verify the prediction performance of algorithms trained by sim-
ulation. The experimental optical setup is basically consistent
with Fig. 3(a). A 1.5 m long turbulence generating pool (TGP)
is heated at the bottom and cooled at the top and generates
Rayleigh–Bénard convection randomly. The experimental tur-
bulence is quite different from the simulated ones, which is
based on Taylor’s hypothesis and von Kármán statistical model,
so it can demonstrate the robustness of the algorithms effec-
tively. The 532 nm laser is collimated, goes through the TGP,
and is then captured by a WFS. The WFS has a 12 × 12micro-
lens array, a resolution of 128 × 128 pixels, and a measure-
ment frame rate of 420 Hz. Finally, we get the coefficients
of 800 frames wavefront with the Fried parameter 15� 0.2 cm
and random windspeed as test set 6.

For comparison, we train the MGNN, LMMSE, and
LSTM with the same train set, and test them using the above
six test sets. All algorithms are implemented by PyTorch 1.7
and Python 3.7.1, and the computer has an Intel Core i7-
10700K CPU, 32 GB of RAM, and an NVIDIA GeForce
GTX 1080Ti GPU. The L1 loss function for the MGNN
and LSTM, and L2 loss function for the LMMSE are used
with the Adam optimizer, and their dropout rates are 0.2.
For the MGNN, the learning rate is 1 × 10−4, and the epoch

is set as 100. For the LMMSE and LSTM, the learning rate
and epoch are 1 × 10−3 and 200, respectively. The inputs of
all algorithms are the Zernike coefficients of the previous 10
consecutive frames, and the output is the coefficients of the
future third frame. The training of the MGNN takes ∼14 min
for 100 epochs, and the forward reasoning in testing takes
∼1.721 s for 2000 frames. On average, the time consumption
of one single frame is approximately 0.862 ms, which is less
than the sampling time of one frame by the WFS. In contrast,
the trained LMMSE and LSTM take 0.385 ms and 0.183 ms
for one-frame prediction, respectively. The parameter quantity
and floating-point operations per second (FLOPS) of the
LMMSE, LSTM, and MGNN are 9153 and 3.08 kFLOPS,
36221 and 1.48 kFLOPS, 337825 and 38.5 MFLOPS, respec-
tively. It is obvious that the MGNN is more complex and needs
more computing resources, due to its repetitive TFC and SFA
structures. The increase in parameter quantity also corresponds
to the strong robustness of the MGNN, which is the key point
we will focus on later.

3. ROBUSTNESS VERIFICATION AND
DISCUSSION

After adequate optimization, our proposed MGNN was com-
pared with the LMMSE and LSTM on the above six test sets.
In addition, the conventional AO was also performed with time
delay in wavefront correction for comparison. The prediction
accuracy is quantified by the root mean square error (RMS) of
wavefronts, which can be expressed as

RMS �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

MN

XM
i

XN
j

�P�Ap� − P�Af ��2
vuut , (12)

where M and N are the length and width of the wavefront
phase, P�·� is the function to covert coefficients into wavefront
phase, and Ap and Af are the predicted and future coefficient
vectors as explained before.

A. Robustness to Turbulence under the Same
Conditions
Test set 1 generated under the same condition for turbulence
simulation is taken for verification of prediction accuracy.
Figure 4 shows the predicted Zernike coefficients and corre-
sponding wavefronts of future third frames in test set 1 as
two samples. From these samples in Figs. 4(a) and 4(b), the
future wavefronts to be predicted have a large phase range,
while the absolute errors of the predicted ones by the three al-
gorithms are much smaller. In comparison, our MGNN has the
lowest error in Zernike coefficients and reconstructed wave-
fronts visually, compared with the LMMSE and LSTM. To
better evaluate the overall performance of the algorithms, we
calculate the RMS values in Eq. (12) of all 1997 data pairs
and count their histograms and RMS curves of consecutive
frames in Fig. 5. In Fig. 5(a1), the normal curves are calculated
with the mean μ and standard deviation (SD) σ for intuitive
comparison, and S is a magnification factor. On the normal
curves, being the closer to the left axis means the smaller overall
error, and the narrower peak width means the better stability.
The mean μ and standard deviation σ are also listed in Table 1.
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From Fig. 5(a1) and Table 1, our MGNN has the lowest values
compared with the other two algorithms, which indicates that
the MGNN achieves the most accurate prediction and stable
prediction here. From the RMS curves of consecutive frames in
Fig. 5(a2), the blue curve (MGNN) is the most stable one
when a prediction variation occurs. For comparison, the red
and orange curves (LSTM and LMMSE) are higher than

the gray curve (conventional AO). It indicates that the incorrect
predictions result in worse correction performance, which is
not expected in predictive AO. The prediction variation in
Fig. 5(a2) occurs due to the significant change of phase.
This evolution mode may not exist in the training set, so all
algorithms have correction performance degradation at the
arrow. Thanks to the introduced physical constraints, our

Fig. 4. Comparison of one-frame prediction accuracy by three algorithms. (a), (b) Predicted Zernike coefficients and corresponding wavefronts
of future third frame in test set 1 as two samples. MGNN, our proposed method; LSTM, one non-linear algorithm; LMMSE, one linear algorithm;
AE, absolute error.

Fig. 5. Comparison of overall prediction performance in different test sets. (a1) Histograms and normal curves of RMS values in test set 1.
N �μ, σ� is the normal distribution with mean μ and standard deviation σ, and S is a magnification factor. (a2) RMS curves of consecutive frames
with or without prediction in (a1). (b1) Histograms and normal curves of RMS values in test set 2. (b2) RMS curves of consecutive frames with or
without prediction in (b1). MGNN: blue; LSTM: red; LMMSE: orange; conventional AO: gray. Test set 1: the same condition as training; test set 2:
windspeed changes. Black arrow: emphasis in comparison.
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MGNN has a significant advantage of stability in predicting
turbulence with temporal variation.

B. Robustness to Turbulence with Changing
Windspeed
In the natural atmosphere, the windspeed changes easily with-
out a specific range, so we must consider the robustness of
algorithms to the unknown turbulence with changing wind-
speed. Test set 2 is generated through three phase screens with
a higher windspeed, which represents faster changes in turbu-
lence. On the basis of calculation way above, their histograms
and RMS curves of consecutive frames are shown in Figs. 5(b1)
and 5(b2). Compared with Fig. 5(a1), the RMS values of con-
ventional AO significantly increased, due to the rapidly chang-
ing turbulence. Within the time delay of three frames, the
turbulence undergoes faster and greater changes, resulting in

greater correction errors. In comparison, the predictive AO is
effective in reducing the correction errors, and our MGNN is
still the most stable one from Figs. 5(b1) and 5(b2). All pre-
diction algorithms have similar mean values of RMS, which are
higher than those in Fig. 5(a1). The changes of windspeed in-
troduce faster and more complex changes in turbulence, result-
ing in a significant impact on prediction. The new inherent
changing model does not match the temporal pattern obtained
by training, making prediction more difficult for the algo-
rithms. Overall, the effect of predictive AO is still held, and
the stability advantage of the MGNN exists here.

C. Robustness to Turbulence with Changing Fried
Parameters
The Fried parameter represents the coherence length of at-
mospheric turbulence, which is one of the key parameters to

Table 1. Statistical RMS Values of All Test Sets in Simulation and Experimenta

Test Sets Parameters RMS (rad) Conventional AO

Predictive AO

MGNN LSTM LMMSE

Sim. Set 1 w � �5, 10, 20� m∕s
r0 � N r (15, 2) cm

Mean (μ) 0.346 0.194 0.209 0.215
SD (σ) 0.111 0.061 0.076 0.121

Set 2 w � �10, 15, 25� m∕s Mean (μ) 1.134 0.739 0.709 0.730
SD (σ) 0.366 0.215 0.241 0.262

Set 3 r0 � N r (5, 2) cm Mean (μ) 0.283 0.136 0.339 0.281
SD (σ) 0.078 0.047 0.142 0.200

Set 4 r0 � N r (10, 2) cm Mean (μ) 0.370 0.197 0.335 0.272
SD (σ) 0.104 0.050 0.103 0.094

Set 5 r0 � N r (20, 2) cm Mean (μ) 0.166 0.076 0.149 0.162
SD (σ) 0.058 0.024 0.115 0.062

Exp. Set 6 r0 � 15� 0.2 cm Mean (μ) 0.033 0.025 0.092 0.064
SD (σ) 0.012 0.007 0.029 0.025

aNr�v1, v2�: random number of normal distributions with mean v1 and standard deviation v2. Sim: simulation; Exp: experiment.

Fig. 6. Comparison of overall prediction performance using test sets with changing Fried parameters. Histograms and normal curves of RMS
values are counted in test sets 3, 4, 1, 5, respectively. MGNN: blue; LSTM: red; LMMSE: orange; conventional AO: gray. Test sets 3, 4, and 5: Fried
parameters change.
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quantify the atmosphere. To verify the robustness to unknown
turbulence with changing Fried parameters, we take the test
sets 1, 3, 4, and 5 for comparison. Here the Fried parameter
is generated by the random number of normal distributions
Nr�v1, v2� with mean v1 and standard deviation v2, while
smaller v1 represents stronger turbulence. Figure 6 shows the
histograms and corresponding normal curves calculated from
RMS values. It is obvious that the blue normal curves are left-
most and have the narrowest peak width in test sets 3, 4, and 5,
which means the MGNN has the lowest prediction errors and
the most stable performance. In contrast, the performance of
the LSTM and LMMSE is unsatisfactory, because the RMS
curves of them are further right and wider than that of conven-
tional AO. As shown in Table 1, the MGNN has almost all the
lowest values in mean and SD values from the RMS, compared
with the other two universal algorithms. With the help of the
MGNN, the mean and SD values of the RMS for conventional
AO are reduced by 54.2% and 58.6% at most, respectively.
The robustness of our MGNN is highlighted here thanks to
the specially designed network, which is helpful to learn more
general spatiotemporal patterns from limited simulation data.

D. Robustness to Turbulence in Experiment
After verifying the robustness on simulated data, the MGNN is
also expected to have stable performance on experimental data.
Under the constriction of supervised learning, the hardware and
time cost are required to obtain enough data from the experi-
ment for deployment. In addition, the turbulence is uncontrol-
lable in the experiment, resulting in the uncertain richness in
the training set. Therefore, the capability of generalization from
simulated data to experimental data is highly important for
reducing costs and difficulty. In our experiment, the actual
parameters are different from those in simulation, which is
persuasive for the robustness of the MGNN. Figures 7(a1)
and 7(a2) show the histograms, the corresponding normal
curves, and the RMS curves of consecutive frames like above.
Similarly, the performance of the LSTM and LMMSE is unac-
ceptable, due to their negative optimization to the correction
results of conventional AO. From Fig. 7(a2), when turbulence
changes slowly and the correction error of conventional AO is
relatively low, the prediction algorithm should maintain this
state in predictive AO. While turbulence undergoes a sudden
change, the prediction algorithm needs to reduce the correction

Fig. 7. Robustness to the experimental data. (a1) Histograms and normal curves of RMS values in test set 6. (a2) RMS curves of consecutive
frames with or without prediction in (a1). MGNN: blue; LSTM: red; LMMSE: orange; conventional AO: gray. Black arrow: emphasis in com-
parison. (b) Predicted Zernike coefficients and corresponding wavefronts of future third frame in test set 6. AE, absolute error. (c1) RMS curves of
consecutive frames with prediction by the MGNN and MGNN-E. MGNN-E (green): MGNN trained by the experimental data. (c2) Box plots
of RMS in (c1).
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error for the stable state. Obviously, our MGNN achieves this
goal while the other two algorithms do not. In fact, the
LMMSE and LSTM are also trained with the simulated data
and have fewer parameter quantities than the MGNN. They
recognize the turbulence changes in the training set but are un-
able to establish a general mode of turbulence evolution.
Therefore, they still make predictions based on familiar but
incorrect relationships, resulting in huge errors in the experi-
mental data. As shown in Fig. 7(b), the Zernike coefficients and
the absolute error of the MGNN are the best. From Table 1,
the mean and SD values of the RMS in predictive AO with the
MGNN are 75.8% and 58.3% of those in conventional AO for
frozen turbulence. To further demonstrate its robustness, we
collected 8000 frames as experimental data from the TGP,
and retrained the proposed network MGNN-E. In Fig. 7(c1),
the RMS curves of the MGNN and MGNN-E from the 300th
to 600th frames in test set 6 are shown for comparison, and the
complete statistical results are displayed in the box plots in
Fig. 7(c2). From these two figures, the correction performance
with the MGNN is similar to that with the MGNN-E. The
MGNN establishes the internal laws of turbulence evolution
from the simulated data, so it has sufficient robustness for
the generalization from simulation to experiment.

Furthermore, we take the closed-loop wavefront correction
numerically by the experimental data, as shown in Fig. 8. The
correction process is divided into three stages: without AO, with
conventional AO, and with predictive AO. The corresponding
wavefronts measured by the WFS are shown in Fig. 8(a), and the
RMS curves of consecutive frames for three stages are shown in
Fig. 8(b). Intuitively, our MGNN still has good robustness to
the experimental data, although it is optimized by simulated
data and has never seen these real turbulence data before.
Both simulated and experimental data follow the statistical
invariant covariance matrix. Therefore, the physical constraints
with the Zernike model enable the MGNN to reveal and estab-
lish the generic spatiotemporal evolution patterns of turbulence

during optimization. To verify the effect of prediction on wave-
front correction, we load the wavefront phases of three stages
onto a spatial light modulator (SLM). The grid is imaged, and
the focal spots are obtained with the phase modulation of the
SLM, as shown in Fig. 8(c). To visualize the imaging changes,
the phases are appropriately amplified in the same way. With
predictive AO, the focal spot is the most concentrated and the
grid is the clearest. They are similar to these of ideal cases without
wavefront disturbance. Overall, the MGNNhas good robustness
to the experimental data. With the help of the MGNN, the
wavefront correction error can be further reduced, which im-
proves the light focusing and imaging effect.

4. CONCLUSIONS

In this paper, we have demonstrated a mixed graph neural net-
work for spatiotemporal wavefront prediction. The temporal fea-
ture catcher and spatial feature analyzer are both specially
designed to deal with temporal and spatial features, respectively.
The Zernike model plays an important role in reducing data di-
mensions and exporting covariance matrix. Our MGNN takes
the invariant covariance matrix of Zernike coefficients as physical
constraints and introduces the graph neural network for spatial
feature analysis. Compared with the LMMSE and LSTM, our
MGNN has the best stability and predictive correction in differ-
ent test sets, including simulated turbulences under the same
condition, with the changing windspeed, with the changing
Fried parameters, and the real turbulence in experiment. It can
perform well with stable and reasonable prediction in practical
AO systems and achieve similar performance to that trained in
real turbulence, even if it is only trained with simulated data.
Our proposed MGNN innovatively introduces the statistical
rules of physical turbulence into network design and exhibits
astonishing generalization robustness. Its stable prediction ability
is applicable to wavefront correction of AO in astronomical ob-
servation, laser communication, and microscopic imaging.

Fig. 8. Closed-loop correction wavefront error in experiment. (a) Three stages of the AO system and their corresponding corrected wavefronts.
(b) RMS curves of three stages in closed-loop correction. Without AO: black line; conventional AO: gray line; predictive AO with MGNN: blue
line. (c) Focal spot and grid imaging of three stages.
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APPENDIX A

According to Noll’s representation, the covariance value between any two coefficients aw and av in A of one frame can be expressed as

E�aw, av� �
δK wv�Zw,Zv�Γ��nw � nv − 5∕3�∕2��D∕r0�5∕3

Γ��nw − nv � 17∕3�∕2�Γ��nv − nw � 17∕3�∕2�Γ��nw � nv � 23∕3�∕2� , (A1)

where nw and nv are the radial orders of Zw and Zv, D is the optical diameter of the system, r0 is the Fried parameter of atmosphere,
and Γ�·� is the gamma function. K wv is the frequency characteristic factor depending on the polynomial terms Zw and Zv, and δ is the
covariance parameter with a value of 0 or 1. They can be expressed as

K wv�Zw,Zv� � 2.2698�−1�nw�nv−2mw
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�nw � 1��nv � 1�

p
, (A2)

δ �
�
1, �mw ≠ 0�∩�mw � mv�∩Par�w, v�
0, others

, (A3)

where mw and mv are the angular orders of Zw and Zv, and Par�w, v� is the function to judge whether the parity of w and v is the
same. We take Eqs. (A2) and (A3) into Eq. (A1), and the covariance value E�aw, av� is equal to the following values besides zero:

E�aw, av� �

8>>>><
>>>>:

2.2698�nw � 1�Γ�nw − 5∕6��D∕r0�5∕3
Γ�17∕6�2Γ�nw � 23∕6� , w � v

−2.2698
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�nw � 1��nv � 1�

p
Γ��nw � nv − 5∕3�∕2��D∕r0�5∕3

Γ��nw − nv � 17∕3�∕2�Γ��nv − nw � 17∕3�∕2�Γ��nw � nv � 23∕3�∕2� , w ≠ v

: (A4)

According to Eq. (A4), ignoring the piston term Z 1, the covariance matrix C of Zernike coefficients can be expressed as

C � E�AT · A� �

2
66664

E�a2, a2� 0 … 0

0 E�a3, a3� … E�aw, av�
..
. ..

. ..
.

0 E�av , aw� … E�am, am�

3
77775: (A5)

Specifically, by ignoring the scaling factor �D∕r0�5∕3, the covariance matrix C̄ is a constant matrix as follows:

C̄�

2
666666666666666666666664

0.4557 0 0 0 0 0 −0.0144 0 0 0 0 0 0 0
0 0.4557 0 0 0 −0.0144 0 0 0 0 0 0 0 0
0 0 0.0236 0 0 0 0 0 0 −0.0039 0 0 0 0
0 0 0 0.0236 0 0 0 0 0 0 0 −0.0039 0 0
0 0 0 0 0.0236 0 0 0 0 0 −0.0039 0 0 0
0 −0.0144 0 0 0 0.0063 0 0 0 0 0 0 0 0

−0.0144 0 0 0 0 0 0.0063 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0.0063 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0.0063 0 0 0 0 0
0 0 −0.0039 0 0 0 0 0 0 0.0025 0 0 0 0
0 0 0 0 −0.0039 0 0 0 0 0 0.0025 0 0 0
0 0 0 −0.0039 0 0 0 0 0 0 0 0.0025 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0.0025 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0.0025

3
777777777777777777777775

:

(A6)
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