• Photonics Research
  • Vol. 7, Issue 8, 828 (2019)
Tiantian Li1、2, Milos Nedeljkovic1, Nannicha Hattasan1, Wei Cao1, Zhibo Qu1, Callum G. Littlejohns1、3, Jordi Soler Penades1, Lorenzo Mastronardi1, Vinita Mittal1, Daniel Benedikovic4, David J. Thomson1, Frederic Y. Gardes1, Hequan Wu2, Zhiping Zhou2, and Goran Z. Mashanovich1、*
Author Affiliations
  • 1Optoelectronics Research Centre, University of Southampton, Southampton SO17 1BJ, UK
  • 2State Key Laboratory of Advanced Optical Communication Systems and Networks, School of Electronics Engineering and Computer Science, Peking University, Beijing 100871, China
  • 3Silicon Technologies Centre of Excellence, Nanyang Technological University, Singapore 639798, Singapore
  • 4Centre de Nanosciences et de Nanotechnologies, CNRS, Univ. Paris-Sud, Université Paris-Saclay, C2N—Palaiseau, 91120 Palaiseau, France
  • show less
    DOI: 10.1364/PRJ.7.000828 Cite this Article Set citation alerts
    Tiantian Li, Milos Nedeljkovic, Nannicha Hattasan, Wei Cao, Zhibo Qu, Callum G. Littlejohns, Jordi Soler Penades, Lorenzo Mastronardi, Vinita Mittal, Daniel Benedikovic, David J. Thomson, Frederic Y. Gardes, Hequan Wu, Zhiping Zhou, Goran Z. Mashanovich. Ge-on-Si modulators operating at mid-infrared wavelengths up to 8  μm[J]. Photonics Research, 2019, 7(8): 828 Copy Citation Text show less
    References

    [1] G. T. Reed, G. Mashanovich, F. Y. Gardes, D. J. Thomson. Silicon optical modulators. Nat. Photonics, 4, 518-526(2010).

    [2] Z. Zhou, R. Chen, X. Li, T. Li. Development trends in silicon photonics for data centers. Opt. Fiber Technol., 44, 13-23(2018).

    [3] P. Dong, Y.-K. Chen, G.-H. Duan, D. T. Neilson. Silicon photonic devices and integrated circuits. Nanophotonics, 3, 215-228(2014).

    [4] T. Li, J. Zhang, H. Yi, W. Tan, Q. Long, Z. Zhou, X. Wang, H. Wu. Low-voltage, high speed, compact silicon modulator for BPSK modulation. Opt. Express, 21, 23410-23415(2013).

    [5] T. Li, D. Wang, J. Zhang, Z. Zhou, F. Zhang, X. Wang, H. Wu. Demonstration of 6.25 Gbaud advanced modulation formats with subcarrier multiplexed technique on silicon Mach-Zehnder modulator. Opt. Express, 22, 19818-19823(2014).

    [6] W. Cao, D. Hagan, D. J. Thomson, M. Nedeljkovic, C. G. Littlejohns, A. Knights, S. Alam, J. Wang, F. Gardes, W. Zhang, S. Liu, K. Li, M. S. Rouifed, G. Xin, W. Wang, H. Wang, G. T. Reed, G. Z. Mashanovich. High-speed silicon modulators for the 2 μm wavelength band. Optica, 5, 1055-1062(2018).

    [7] Y. Zou, S. Chakravarty, C.-J. Chung, X. Xu, R. T. Chen. Mid-infrared silicon photonic waveguides and devices. Photon. Res., 6, 254-276(2018).

    [8] R. A. Soref, S. J. Emelett, W. R. Buchwald. Silicon waveguided components for the long-wave infrared region. J. Opt. A, 8, 840-848(2006).

    [9] T. Baehr-Jones, A. Spott, R. Ilic, A. Spott, B. Penkov, W. Asher, M. Hochberg. Silicon-on-sapphire integrated waveguides for the mid-infrared. Opt. Express, 18, 12127-12135(2010).

    [10] S. Khan, J. Chiles, J. Ma, S. Fathpour. Silicon-on-nitride waveguides for mid-and near-infrared integrated photonics. Appl. Phys. Lett., 102, 121104(2013).

    [11] J. Kang, M. Takenaka, S. Takagi. Novel Ge waveguide platform on Ge-on-insulator wafer for mid-infrared photonic integrated circuits. Opt. Express, 24, 11855-11864(2016).

    [12] V. Vakarin, J. M. Ramírez, J. Frigerio, A. Ballabio, X. Le Roux, Q. Liu, D. Bouville, L. Vivien, G. Isella, D. Marris-Morini. Ultra-wideband Ge-rich silicon germanium integrated Mach-Zehnder interferometer for mid-infrared spectroscopy. Opt. Lett., 42, 3482-3485(2017).

    [13] J.-M. Ramirez, Q. Liu, V. Vakarin, J. Frigerio, A. Ballabio, X. Le Roux, D. Bouville, L. Vivien, G. Isella, D. Marris-Morini. Graded SiGe waveguides with broadband low-loss propagation in the mid infrared. Opt. Express, 26, 870-877(2018).

    [14] M. Sinobad, C. Monat, B. Luther-Davies, P. Ma, S. Madden, D. J. Moss, A. Mitchell, D. Allioux, R. Orobtchouk, S. Boutami, J.-M. Hartmann, J.-M. Fedeli, C. Grillet. Mid-infrared octave spanning supercontinuum generation to 8.5 μm in silicon-germanium waveguides. Optica, 5, 360-366(2018).

    [15] M. Nedeljkovic, J. Soler Penades, C. J. Mitchell, T. Dominquez Bucio, A. Z. Khokhar, C. Littlejohns, F. Y. Gardes, G. Z. Mashanovich. Surface grating coupled low loss Ge-on-Si rib waveguides and multimode interferometers. IEEE Photon. Technol. Lett., 27, 1040-1043(2015).

    [16] Y. C. Chang, V. Paeder, L. Hvozdara, J. M. Hartmann, H. P. Herzig. Low-loss germanium strip waveguides on silicon for the mid-infrared. Opt. Lett., 37, 2883-2885(2012).

    [17] W. Li, P. Anantha, S. Bao, K. H. Lee, X. Guo, T. Hu, L. Zhang, H. Wang, R. Soref, C. S. Tan. Germanium-on-silicon nitride waveguides for mid-infrared integrated photonics. Appl. Phys. Lett., 109, 241101(2016).

    [18] N. Hô, M. C. Phillips, H. Qiao, P. J. Allen, K. Krishnaswami, B. J. Riley, T. L. Myers, N. C. Anheier. Single-mode low-loss chalcogenide glass waveguides for the mid-infrared. Opt. Lett., 31, 1860-1862(2006).

    [19] R. Soref. Mid-infrared photonics in silicon and germanium. Nat. Photonics, 4, 495-497(2010).

    [20] M. Nedeljkovic, J. S. Penades, V. Mittal, G. S. Murugan, A. Z. Khokhar, C. LittleJohns, L. G. Carpenter, C. B. E. Gawith, J. S. Wilkinson, G. Mashanovich. Germanium-on-silicon waveguides operating at mid-infrared wavelengths up to 8.5 μm. Opt. Express, 25, 27431-27441(2017).

    [21] D. A. Kozak, T. H. Stievater, R. Mahon, W. S. Rabinovich. Germanium-on-silicon waveguides at wavelengths from 6.85 to 11.25 microns. IEEE J. Sel. Top. Quantum Electron., 24, 8200804(2018).

    [22] K. Gallacher, R. W. Millar, U. Griškevičiūte, L. Baldassarre, M. Sorel, M. Ortolani, D. J. Paul. Low loss Ge-on-Si waveguides operating in the 8-14 μm atmospheric transmission window. Opt. Express, 26, 25667-25675(2018).

    [23] A. Malik, M. Muneeb, Y. Shimura, J. Van Campenhout, R. Loo, G. Roelkens. Germanium-on-silicon planar concave grating wavelength (de)multiplexers in the mid-infrared. Appl. Phys. Lett., 103, 161119(2013).

    [24] A. Malik, M. Muneeb, S. Pathak, Y. Shimura, J. Van Campenhout, R. Loo, G. Roelkens. Germanium-on-silicon mid-infrared arrayed waveguide grating multiplexers. IEEE Photon. Technol. Lett., 25, 1805-1808(2013).

    [25] C. Alonso-Ramos, M. Nedeljkovic, D. Benedikovic, J. S. Penades, C. G. Littlejohns, A. Z. Khokhar, D. Perez-Galacho, L. Vivien, P. Cheben, G. Z. Mashanovich. Germanium-on-silicon mid-infrared grating couplers with low-reflectivity inverse taper excitation. Opt. Lett., 41, 4324-4327(2016).

    [26] A. Malik, S. Dwivedi, L. Van Landschoot, M. Muneeb, Y. Shimura, G. Lepage, J. Van Campenhout, W. Vanherle, T. Van Opstal, R. Loo, G. Roelkens. Ge-on-Si and Ge-on-SOI thermo-optic phase shifters for the mid-infrared. Opt. Express, 22, 28479-28488(2014).

    [27] M. Nedeljkovic, S. Stankovic, C. J. Mitchell, A. Z. Khokhar, S. A. Reynolds, D. J. Thomson, F. Y. Gardes, C. G. Littlejohns, G. T. Reed, G. Z. Mashanovich. Mid-infrared thermo-optic modulators in SOI. IEEE Photon. Technol. Lett., 26, 1352-1355(2014).

    [28] G. Z. Mashanovich, M. M. Milošević, M. Nedeljkovic, N. Owens, B. Xiong, E. J. Teo, Y. Hu. Low loss silicon waveguides for the mid-infrared. Opt. Express, 19, 7112-7119(2011).

    [29] J. Kang, Z. Cheng, W. Zhou, T. H. Xiao, K. L. Gopalakrisna, M. Takenaka, H. K. Tsang, K. Goda. Focusing subwavelength grating coupler for mid-infrared suspended membrane germanium waveguides. Opt. Lett., 42, 2094-2097(2017).

    [30] M. Nedeljkovic, R. Soref, G. Z. Mashanovich. Predictions of free-carrier electroabsorption and electrorefraction in germanium. IEEE Photon. J., 7, 2600214(2015).

    [31] G. Z. Mashanovich, M. Nedeljkovic, J. Soler-Penades, Z. Qu, W. Cao, A. Osmon, Y. Wu, C. J. Stirling, Y. Qi, Y. Xu-Cheng, L. Reid, C. G. Littlejohns, J. Kang, Z. Zhao, M. Takenaka, T. Li, Z. Zhou, F. Y. Gardes, D. J. Thomson, G. T. Reed. Group IV mid-infrared photonics [Invited]. Opt. Mater. Express, 8, 2276-2286(2018).

    [32] T. Li, M. Nedeljkovic, N. Hattasan, A. Z. Khokhar, S. A. Reynolds, S. Stankovic, M. Banakar, W. Cao, Z. Qu, C. G. Littlejohns, J. S. Penades, K. Grabska, L. Mastronardi, D. J. Thomson, F. Y. Gardes, G. T. Reed, H. Wu, Z. Zhou, G. Z. Mashanovich. Mid-infrared Ge-on-Si electro-absorption modulator. IEEE 14th International Conference on Group IV Photonics (GFP), 7-8(2017).

    [33] B. Troia, J. S. Penades, A. Z. Khokhar, M. Nedeljkovic, C. Alonso-Ramos, V. M. N. Passaro, G. Z. Mashanovich. Germanium-on-silicon Vernier-effect photonic microcavities for the mid-infrared. Opt. Lett., 41, 610-613(2016).

    [34] R. Kitamura, L. Pilon, M. Jonasz. Optical constants of silica glass from extreme ultraviolet to far infrared at near room temperature. Appl. Opt., 46, 8118-8133(2007).

    [35] G. S. Marlow, M. B. Das. The effects of contact size and non-zero metal resistance on the determination of specific contact resistance. Solid-State Electron., 25, 91-94(1982).

    [36] M. Balkanski, R. F. Wallis. Semiconductor Physics and Applications(2000).

    [37] K. Gallacher, P. Velha, D. J. Paul, I. MacLaren, M. Myronov, D. R. Leadley. Ohmic contacts to n-type germanium with low specific contact resistivity. Appl. Phys. Lett., 100, 022113(2012).

    [38] R. Soref, J. R. Hendrickson, J. Sweet. Simulation of germanium nanobeam electro-optical 2 × 2 switches and 1 × 1 modulators for the 2 to 5 μm infrared region. Opt. Express, 24, 9369-9382(2016).

    [39] R. A. Soref. Mid-infrared 2 × 2 electro-optical switching by silicon and germanium three-waveguide and four-waveguide directional couplers using free-carrier injection. Photon. Res., 2, 102-110(2014).

    CLP Journals

    [1] Meng Guo, Hongbo He, Kui Yi, Shuying Shao, Guohang Hu, Jianda Shao. Optical characteristics of ultrathin amorphous Ge films[J]. Chinese Optics Letters, 2020, 18(10): 103101

    Tiantian Li, Milos Nedeljkovic, Nannicha Hattasan, Wei Cao, Zhibo Qu, Callum G. Littlejohns, Jordi Soler Penades, Lorenzo Mastronardi, Vinita Mittal, Daniel Benedikovic, David J. Thomson, Frederic Y. Gardes, Hequan Wu, Zhiping Zhou, Goran Z. Mashanovich. Ge-on-Si modulators operating at mid-infrared wavelengths up to 8  μm[J]. Photonics Research, 2019, 7(8): 828
    Download Citation