• Chinese Journal of Lasers
  • Vol. 49, Issue 20, 2007201 (2022)
Jianrong Qiu, Chen Yang, Cheng Zhang, Jia Meng, Tao Han, Huanghe Qian, Peizhe Chen, Lu Yang, Zhiyi Liu, and Zhihua Ding*
Author Affiliations
  • State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou 310027, Zhejiang, China
  • show less
    DOI: 10.3788/CJL202249.2007201 Cite this Article Set citation alerts
    Jianrong Qiu, Chen Yang, Cheng Zhang, Jia Meng, Tao Han, Huanghe Qian, Peizhe Chen, Lu Yang, Zhiyi Liu, Zhihua Ding. Optimization of Large-Core-Fiber-Based Fiber Probe for Optical Coherence Tomography[J]. Chinese Journal of Lasers, 2022, 49(20): 2007201 Copy Citation Text show less
    References

    [1] He D H, Li Z L, Nan N et al. A probe driven by miniature propeller for intravascular optical coherence tomography[J]. Chinese Journal of Lasers, 47, 1107002(2020).

    [2] Nishimiya K, Tearney G. Micro optical coherence tomography for coronary imaging[J]. Frontiers in Cardiovascular Medicine, 8, 613400(2021).

    [3] Ge X, Chen S F, Chen S et al. High resolution optical coherence tomography[J]. Journal of Lightwave Technology, 39, 3824-3835(2021).

    [4] Wang C, Wen Z L, Sun J M et al. Research on SS-OCT vibration measurement method based on ultra-small GRIN fiber probe[J]. Acta Optica Sinica, 41, 1511002(2021).

    [5] Xue P. Development of high-performance optical coherence tomography[J]. Chinese Journal of Lasers, 48, 1517001(2021).

    [6] Kashiwagi M, Liu L B, Chu K K et al. Feasibility of the assessment of cholesterol crystals in human macrophages using micro optical coherence tomography[J]. PLoS One, 9, e102669(2014).

    [7] Chen Y, Trinh L A, Fingler J et al. 3D in vivo imaging with extended-focus optical coherence microscopy[J]. Journal of Biophotonics, 10, 1411-1420(2017).

    [8] Coquoz S, Bouwens A, Marchand P J et al. Interferometric synthetic aperture microscopy for extended focus optical coherence microscopy[J]. Optics Express, 25, 30807-30819(2017).

    [9] Kim J, Xing J C, Nam H S et al. Endoscopic micro-optical coherence tomography with extended depth of focus using a binary phase spatial filter[J]. Optics Letters, 42, 379-382(2017).

    [10] Liao W C, Chen T Y, Wang C M et al. Endoscopic optical coherence tomography with a focus-adjustable probe[J]. Optics Letters, 42, 4040-4043(2017).

    [11] Dubois A, Levecq O, Azimani H et al. Line-field confocal time-domain optical coherence tomography with dynamic focusing[J]. Optics Express, 26, 33534-33542(2018).

    [12] Wang W, Wang G Y, Ma J et al. Miniature all-fiber axicon probe with extended Bessel focus for optical coherence tomography[J]. Optics Express, 27, 358-366(2019).

    [13] Pahlevaninezhad H, Khorasaninejad M, Huang Y W et al. Nano-optic endoscope for high-resolution optical coherence tomography in vivo[J]. Nature Photonics, 12, 540-547(2018).

    [14] Li J, Thiele S, Quirk B C et al. Ultrathin monolithic 3D printed optical coherence tomography endoscopy for preclinical and clinical use[J]. Light: Science & Applications, 9, 124(2020).

    [15] Lorenser D, Yang X J, Sampson D D. Ultrathin fiber probes with extended depth of focus for optical coherence tomography[J]. Optics Letters, 37, 1616-1618(2012).

    [16] Yin B W, Hyun C, Gardecki J A et al. Extended depth of focus for coherence-based cellular imaging[J]. Optica, 4, 959-965(2017).

    [17] Okoro C, Cunningham C R, Baillargeon A R et al. Modeling, optimization, and validation of an extended-depth-of-field optical coherence tomography probe based on a mirror tunnel[J]. Applied Optics, 60, 2393-2399(2021).

    [18] Qiu J R, Shen Y, Shangguan Z W et al. All-fiber probe for optical coherence tomography with an extended depth of focus by a high-efficient fiber-based filter[J]. Optics Communications, 413, 276-282(2018).

    [19] Ding Z H, Qiu J R, Shen Y et al. Lens-free all-fiber probe with an optimized output beam for optical coherence tomography[J]. Optics Letters, 42, 2814-2817(2017).

    [20] Qiu J R, Han T, Liu Z Y et al. Uniform focusing with an extended depth range and increased working distance for optical coherence tomography by an ultrathin monolith fiber probe[J]. Optics Letters, 45, 976-979(2020).

    [21] Qiu J R, Meng J, Liu Z Y et al. Fast simulation and design of the fiber probe with a fiber-based pupil filter for optical coherence tomography using the eigenmode expansion approach[J]. Optics Express, 29, 2172-2183(2021).

    [22] Okamoto K[M]. Fundamentals of optical waveguides(2021).

    [23] Hofmann P, Mafi A, Jollivet C et al. Detailed investigation of mode-field adapters utilizing multimode-interference in graded index fibers[J]. Journal of Lightwave Technology, 30, 2289-2298(2012).

    [24] Yilmaz Y O, Mehta A, Mohammed W S et al. Fiber-optic beam shaper based on multimode interference[J]. Optics Letters, 32, 3170-3172(2007).

    [25] Wang H, Gan F. High focal depth with a pure-phase apodizer[J]. Applied Optics, 40, 5658-5662(2001).

    [26] Lorenser D, Yang X, Sampson D D. Accurate modeling and design of graded-index fiber probes for optical coherence tomography using the beam propagation method[J]. IEEE Photonics Journal, 5, 3900015(2013).

    [27] Gallagher D F G, Felici T P. Eigenmode expansion methods for simulation of optical propagation in photonics: pros and cons[J]. Proceedings of SPIE, 4987, 69-82(2003).

    [28] Welford W T. Use of annular apertures to increase focal depth[J]. Journal of the Optical Society of America A, 50, 749-753(1960).

    [29] Quémener M, Grégoire N, Morency S et al. MCVD-based GRIN-axicon for the generation of scalable Bessel-Gauss beams[J]. Optics Letters, 46, 1333-1336(2021).

    Jianrong Qiu, Chen Yang, Cheng Zhang, Jia Meng, Tao Han, Huanghe Qian, Peizhe Chen, Lu Yang, Zhiyi Liu, Zhihua Ding. Optimization of Large-Core-Fiber-Based Fiber Probe for Optical Coherence Tomography[J]. Chinese Journal of Lasers, 2022, 49(20): 2007201
    Download Citation