• Photonics Research
  • Vol. 8, Issue 5, 745 (2020)
Qi Zhao1,2, Miao Dong1, Yihua Bai1, and Yuanjie Yang1,*
Author Affiliations
  • 1School of Physics, University of Electronic Science and Technology of China, Chengdu 610054, China
  • 2Southwest Institute of Technical Physics, Chengdu 610041, China
  • show less
    DOI: 10.1364/PRJ.384925 Cite this Article Set citation alerts
    Qi Zhao, Miao Dong, Yihua Bai, Yuanjie Yang, "Measuring high orbital angular momentum of vortex beams with an improved multipoint interferometer," Photonics Res. 8, 745 (2020) Copy Citation Text show less
    References

    [1] M. Yao, M. J. Padgett. Orbital angular momentum: origins, behavior and applications. Adv. Opt. Photon., 3, 161-204(2011).

    [2] L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, J. P. Woerdman. Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes. Phys. Rev. A, 45, 8185(1992).

    [3] F. Ricci, W. Löffler, M. P. van Exter. Instability of higher-order optical vortices analyzed with a multi-pinhole interferometer. Opt. Express, 20, 22961-22975(2012).

    [4] A. Mair, A. Vaziri, G. Weihs, A. Zeilinger. Entanglement of the orbital angular momentum states of photons. Nature, 412, 313-316(2001).

    [5] A. Vaziri, J. Pan, T. Jennewein, G. Weihs, A. Zeilinger. Concentration of higher dimensional entanglement: qutrits of photon orbital angular momentum. Phys. Rev. Lett., 91, 227902(2003).

    [6] J. Wang. Advances in communications using optical vortices. Photon. Res., 4, B14-B28(2016).

    [7] J. Leach, J. Courtial, S. M. Barnett. Interferometric methods to measure orbital and spin, or the total angular momentum of a single photon. Phys. Rev. Lett., 92, 013601(2004).

    [8] J. Keller, A. Schönle, S. W. Hell. Efficient fluorescence inhibition patterns for RESOLFT microscopy. Opt. Express, 15, 3361-3371(2007).

    [9] K. Ladavac, D. G. Grier. Microoptomechanical pumps assembled and driven by holographic optical vortex arrays. Opt. Express, 12, 1144-1149(2004).

    [10] Y. Shen, Z. Wan, Y. Meng, X. Fu, M. Gong. Polygonal vortex beams. IEEE Photon. J., 10, 1503016(2018).

    [11] M. Harwit. Photon orbital angular momentum in astrophysics. Astrophys. J., 597, 1266-1270(2003).

    [12] Y. Yang, M. Mazilu, K. Dholakia. Measuring the orbital angular momentum of partially coherent optical vortices through singularities in their cross-spectral density functions. Opt. Lett., 37, 4949-4951(2012).

    [13] S. Zheng, Y. Li, Q. Lin, X. Zeng, G. Zheng, Y. Cai, Z. Chen, S. Xu, D. Fan. Experimental realization to efficiently sort vector beams by polarization topological charge via Pancharatnam-Berry phase modulation. Photon. Res., 6, 385-389(2018).

    [14] Y. Yang, Y. Liu. Measuring azimuthal and radial mode indices of a partially coherent vortex field. J. Opt., 18, 015604(2016).

    [15] H. Ma, X. Li, Y. Tai, H. Li, J. Wang, M. Tang, Y. Wang, J. Tang, Z. Nie. In situ measurement of the topological charge of a perfect vortex using the phase shift method. Opt. Lett., 42, 135-138(2017).

    [16] Y. Shen, X. Wang, Z. Xie, C. Min, X. Fu, Q. Liu, M. Gong, X. Yuan. Optical vortices 30 years on: OAM manipulation from topological charge to multiple singularities. Light: Sci. Appl., 8, 90(2019).

    [17] G. Gibson, J. Courtial, M. J. Padgett, M. Vasnetsov, V. Pas’ko, S. M. Barnett, S. Franke-Arnold. Free-space information transfer using light beams carrying orbital angular momentum. Opt. Express, 12, 5448-5456(2004).

    [18] J. Leach, M. Padgett, S. Barnett, S. Franke-Arnold, J. Courtial. Measuring the orbital angular momentum of a single photon. Phys. Rev. Lett., 88, 257901(2002).

    [19] H. I. Sztul, R. R. Alfano. The Poynting vector and angular momentum of Airy beams. Opt. Express, 16, 9411-9416(2018).

    [20] G. C. G. Berkhout, M. W. Beijersbergen. Method for probing the orbital angular momentum of optical vortices in electromagnetic waves from astronomical objects. Phys. Rev. Lett., 101, 100801(2008).

    [21] C. Guo, S. Yue, G. Wei. Measuring the orbital angular momentum of optical vortices using a multipinhole plate. Appl. Phys. Lett., 94, 231104(2009).

    [22] G. C. G. Berkhout, M. P. J. Lavery, J. Courtial, M. W. Beijersbergen, M. J. Padgett. Efficient sorting of orbital angular momentum states of light. Phys. Rev. Lett., 105, 153601(2010).

    [23] H. Zhou, L. Shi, X. Zhang, J. Dong. Dynamic interferometry measurement of orbital angular momentum of light. Opt. Lett., 39, 6058-6061(2014).

    [24] D. Fu, D. Chen, R. Liu, Y. Wang, H. Gao, F. Li, P. Zhang. Probing the topological charge of a vortex beam with dynamic angular double slits. Opt. Lett., 40, 788-791(2015).

    [25] S. Fu, T. Wang, Y. Gao, C. Gao. Diagnostics of the topological charge of optical vortex by a phase-diffractive element. Chin. Opt. Lett., 14, 080501(2016).

    [26] J. Narag, N. Hermosa. Probing higher orbital angular momentum of Laguerre-Gaussian beams via diffraction through a translated single slit. Phy. Rev. Appl., 11, 054025(2019).

    [27] S. N. Alperin, R. D. Niederriter, J. T. Gopinath, M. E. Siemens. Quantitative measurement of the orbital angular momentum of light with a single, stationary lens. Opt. Lett., 41, 5019-5022(2016).

    [28] S. Fu, S. Zhang, T. Wang, C. Gao. Measurement of orbital angular momentum spectra of multiplexing optical vortices. Opt. Express, 24, 6240-6248(2016).

    [29] J. Zhu, P. Zhang, D. Fu, D. Chen, R. Liu, Y. Zhou, H. Gao, F. Li. Probing the fractional topological charge of a vortex light beam by using dynamic angular double slits. Photon. Res., 4, 187-190(2016).

    [30] D. Deng, M. Lin, Y. Li, H. Zhao. Precision measurement of fractional orbital angular momentum. Phy. Rev. Appl., 12, 014048(2019).

    [31] Y. Shen, X. Fu, M. Gong. Truncated triangular diffraction lattices and orbital-angular-momentum detection of vortex SU(2) geometric modes. Opt. Express, 26, 25545-25557(2018).

    [32] Y. Yang, Q. Zhao, L. Liu, Y. Liu, C. Rosales-Guzmán, C.-W. Qiu. Manipulation of orbital-angular-momentum spectrum using pinhole plates. Phys. Rev. Appl., 12, 064007(2019).

    [33] L. Shi, L. Tian, X. Chen. Characterizing topological charge of optical vortex using non-uniformly distributed multi-pinhole plate. Chin. Opt. Lett., 10, 120501(2012).

    [34] J. Arlt, K. Dholakia, L. Allen, M. J. Padgett. Parametric down-conversion for light beams possessing orbital angular momentum. Phys. Rev. A, 59, 3950-3952(1999).

    [35] H. Ma, X. Li, H. Zhang, J. Tang, H. Li, M. Tang, J. Wang, Y. Cai. Optical vortex shaping via a phase jump factor. Opt. Lett., 44, 1379-1382(2019).

    [36] D. Cozzolino, E. Polino, M. Valeri, G. Carvacho, D. Bacco, N. Spagnolo, L. K. Oxenløwe, F. Sciarrinob. Air-core fiber distribution of hybrid vector vortex-polarization entangled states. Adv. Photon., 1, 046005(2019).

    CLP Journals

    [1] Li Chen, Rakesh Kumar Singh, Aristide Dogariu, Ziyang Chen, Jixiong Pu, "Estimating topological charge of propagating vortex from single-shot non-imaged speckle," Chin. Opt. Lett. 19, 022603 (2021)

    [2] Yihua Bai, Haoran Lv, Xin Fu, Yuanjie Yang, "Vortex beam: generation and detection of orbital angular momentum [Invited]," Chin. Opt. Lett. 20, 012601 (2022)

    Qi Zhao, Miao Dong, Yihua Bai, Yuanjie Yang, "Measuring high orbital angular momentum of vortex beams with an improved multipoint interferometer," Photonics Res. 8, 745 (2020)
    Download Citation