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A multipoint interferometer (MI), uniformly distributed point-like pinholes in a circle, was proposed to measure
the orbital angularmomentum (OAM)of vortex beams [Phys. Rev. Lett. 101, 100801 (2008)], which can be used for
measuring OAM of light from astronomical sources. This is a simple and robust method; however, it is noted that
this method is only available for low topological charge because the diffracted intensity patterns for vortex beams
with higher OAM will repeat periodically. Here, we propose an improved multipoint interferometer (IMI) for
measuring the OAM of an optical vortex with high topological charge. The structure of our IMI is almost the same
as theMI, but the size of each pinhole is larger than a point in theMI. Such a small change enables eachpinhole to get
more phase information from the incident beams; accordingly, the IMI can distinguish any vortex beams with
different OAM. We demonstrate its viability both theoretically and experimentally. © 2020 Chinese Laser Press

https://doi.org/10.1364/PRJ.384925

1. INTRODUCTION

Optical vortices with azimuthal phase exp�ilφ� carry orbital
angular momentum (OAM) of lℏ per photon, where l is
the topological charge, ℏ is the reduced Planck’s constant,
and φ is the azimuthal angle [1–3]. Vortex beams with
OAM have found applications in many fields, such as quantum
information processing [4,5], free-space communications [6,7],
super-resolution microscopy [8], optical micromanipulations
[9,10], and astronomical sources detection [11]. Accordingly,
it is important to measure the topological charge (or OAM)
of a vortex beam in many applications [11–16]. Until now, nu-
merous methods have been developed for measuring the topo-
logical charge of vortex beams. For instance, we can use a spatial
light modulator and monofiber to convert vortex beams to
Gaussian beams by holographic techniques, while the efficiency
is low [17]. The widely used method is to observe the inter-
ference pattern by interfering the wavefront of the vortex beam
with its own mirror image or a reference wavefront, such as the
Mach–Zehnder interferometer [18] and double-slit interfer-
ence [19]. In 2008, Berkhout and Beijersbergen [20] presented
a multipoint interferometer (MI) to detect the OAM of vortex
beams by observing the interference patterns. It is shown that
this method can find applications in measuring the OAM of
light from astronomical sources. Later, a ring-sampled multi-
point plate was developed for measuring the OAM of vortex
beams based on the retrieving algorithm [21]. Also, we can

measure the OAM by optical transformation, namely, con-
verting the vortex beam with the spiral phase into a beam with
a transverse phase gradient [22]. Besides the symmetrical struc-
tures, some asymmetric structures were also developed for
measuring OAM, such as a screen with two nonparallel air slits
[23], dynamic angular double slits [24], and a gradually chang-
ing period diffraction element [25]. More recently, several new
devices, such as a translated single slit [26], single stationary
lens [27], and gray-scale algorithm [28], have been introduced
to determine the OAM of vortex beams. Furthermore, some
methods for measuring fractional topological charge of vortex
beams have been proposed as well [29–31]. Among the afore-
mentioned methods, the multipoint interferometer (MI) is one
of the most robust and simple. We found that such a simple MI
can also be used to manipulate the OAM spectrum [32].
However, it is shown that the interference patterns, generated
from the MI, will repeat periodically once the value of topo-
logical charge becomes larger than half-value of the number
of pinholes. In other words, this method is only available
for vortex beams with low topological charge [33].

In this work, we propose an improved multipoint interfer-
ometer (IMI), which is formed by uniformly distributed circu-
lar apertures instead of point-like pinholes, where the radius of
aperture (r0) is not negligible, as shown in Fig. 1, to solve such
problems. The results demonstrate that the far-field interfer-
ence patterns using such a method will not repeat any more
for vortex beams with any topological charge. Therefore, the
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IMI can be used to measure the vortex beams with high topo-
logical charge.

2. THEORY AND METHODS

A. Theory of IMI
The schematic for measuring the topological charge of an op-
tical vortex by an IMI is illustrated in Fig. 1. When a vortex
beam illuminates on the IMI, we can measure its OAM by
detecting the interference patterns in the far field.

We start with the proposed method theoretically. The com-
plex amplitude of the optical vortex beam in the source plane,
namely, just after passing through the IMI, can be written as
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where circ�x, y� is the transmittance function of the aperture,
and xn, yn are the central coordinates of the nth aperture. The
complex amplitude of Laguerre–Gaussian (LG) beams with
topological charge l is given by
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where w is the waist size of the beam, Llp�·� is the associated
Laguerre polynomial, and p and l are the radial and azimuthal
mode index, respectively.

Considering the Fraunhofer limit, the intensity pattern I lp in
the detector plane can be written as
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where FTf·g denotes the Fourier transform operator, and ⊗ is
the convolution operator. J1 is the Bessel function of the first

order, f x and f y are given by f x � x
λz

and f y � y
λz
, and

an � 2πn∕N is the azimuthal coordinate of the nth aperture.
Provided the radius of each aperture r0 is small enough and

can be neglected, the far-field intensity pattern can be reduced
as [20]
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To demonstrate the power of our method, the simulated in-
tensity patterns of vortex beams with different OAM diffracted
by IMI with six circular apertures are shown in Fig. 2(a).

As a comparison, the corresponding results for MI are
shown in Fig. 2(b) as well. From Fig. 2(a), we can see that,
for IMI, all the intensity patterns differ significantly, even when
the topological charge is larger than the number of apertures.
Therefore, the OAM of the vortex beams can be measured
by detecting the interference patterns directly. In Fig. 2(b),
the intensity patterns repeat periodically from l � 4,
viz., the patterns are the same for l � f0, 6g, f1, 5, 7g,
f2, 4, 8g… The intensity patterns can be inferred to repeat peri-
odically when the topological charges satisfy the equation
l 1 − l2 � Nm, or l 1 � l 2 � Nm, where m � 1, 2, 3,…, is
an arbitrary integer, and N is the number of the pinholes in
MI. For example, using MI, the interference pattern of the vor-
tex beam with l � 1 is the same as those with l � 5 and l � 7.
Figure 1 shows that the MI with six pinholes does not work for
vortex beams with l > 3, while the IMI can still work for vortex
beams with high topological charge.

B. Physical Explanation
Now, let’s discuss why the intensity patterns can repeat for dif-
ferent topological charges using MI. Suppose we use two vortex
beams to illuminate the MI successively, satisfying l 1 − l2 �
Nm. Then, the far-field complex amplitude of the beam
passing through the nth pinhole can be written as

Fig. 1. Schematic of the experimental setup for detecting the topo-
logical charge of optical vortex with an IMI.

Fig. 2. Far-field intensity patterns for vortex beams with different
topological charges diffracted by (a) IMI and (b) MI with N � 6.
(a) and (b) are calculated by Eqs. (3) and (4), respectively.
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This is why the intensity patterns for l1 and l2 are the same
using the MI. For l 1 � l2 � Nm, the situation is similar, and
the expression for the far-field complex amplitude can be
written as
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Here, * denotes the complex conjugate. Equation (6) shows
that, if one uses MI, the interference patterns for l 1 and l 2 are
the same when l 1 � l 2 � Nm.

To illustrate the new insight gained from our improved
method, we visually analyze the two different interfering proc-
esses diffracted by MI and IMI, using the local phase informa-
tion for vortex beams with l � 1 and 7 in Fig. 3. Figures 3(d1)
and 3(d2) show that the local phase information obtained by
MI is nearly the same, due to the tiny size of the pinhole,
and consequently causes the identical interference patterns
in Figs. 3(e1) and 3(e2). However, the local phase information
obtained by the apertures in IMI [Fig. 3(g2)] is obviously differ-
ent from that in MI [Fig. 3(g1)], due to the bigger size of the
aperture and because the apertures are closer to the center of the
beam axis, where the phase changes quicker than in the outer
region. Accordingly, the distinguishable interference patterns
can be observed [see Figs. 3(h1) and 3(h2)]. It is clear from

Fig. 3 that, although the structure of our IMI is similar to
MI, the IMI can get more phase information and can distin-
guish any vortex beams with different OAM.

3. EXPERIMENTAL RESULTS

To prove the feasibility of our proposed method, we measure
the interference patterns diffracted by IMI experimentally. The
experimental setup used to generate and measure the OAM of
optical vortices is shown in Fig. 4. The measured vortex beams
possessing OAM are generated by the spiral phase plate [34,35]
displayed on a phase-only liquid crystal spatial light modulator
(SLM1, Holoeye PLUTO VIS), illuminated by a helium-neon
laser with the wavelength of 632.8 nm that emits a Gaussian
beam with w � 10 mm after collimated and broadened by a
telescope system. Meanwhile, the IMI, simulated by the inten-
sity-only SLM (SLM2, Holoeye LC-R 1080), is placed in front
of the Fourier lens with the focal length of f � 1000 mm. We
placed Fresnel lens L1 in an f − f geometry system, imaging
the far-field diffraction pattern of the plate. The far-field dif-
fraction intensity pattern was recorded by a digital camera with
the pixel size of 3.45 μm. We used SLMs to generate vortex
beams (SLM1) and to create the desired IMI (SLM2), respec-
tively. The polarization state of the beam produced by the
helium-neon laser is controlled by the polarizer, collimated
and expanded by the lens, and sent to the phase-only

Fig. 3. Distinctions between the two methods with (c) MI and (f ) IMI. (a) and (b) The phase distributions of vortex beams with l � 1 and l � 7,
respectively. (d1) and (d2) are the corresponding local phase distributions obtained by MI for l � 1 and l � 7, respectively. (e1) and (e2) are the
corresponding far-field intensity patterns, respectively. (g1), (g2), (h1), and (h2) are the same as (d1), (d2), (e1), and (e2) but for IMI.

Fig. 4. Schematic overview of the setup for measuring OAM of the
vortex beams.
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SLM1. A diaphragm allowed selecting the desired diffraction
order, which was generated by spiral phase plate displayed
on SLM1. The desired plate created by the SLM2 is in the front
focal plane of the Fourier-transforming lens. By using this
f − f optical system, the far-field diffraction patterns of the
plate were imaged onto the CCD camera. We used an analyzer
to ensure appropriate state incidence on the CCD camera.

The far-field diffraction intensity patterns recorded in our
experiment, for different topological charges, are shown in
Fig. 5, where it is shown that the experimental results agree
well with the simulations shown in Fig. 2. Figure 5 also shows
that an IMI with larger apertures enables us to characterize high
topological charge from the diffracted intensity patterns.

4. CONCLUSIONS

In conclusion, we demonstrated an approach to measure the
OAM of vortex beams by distinguishing the far-field intensity
patterns with an IMI. This robust method is as simple as MI;
accordingly, it can be used to measure the OAM of light from
astronomical sources as well. The only difference between IMI
and MI is the size of pinholes. The bigger pinholes in IMI en-
able us to measure the high topological charge of vortex beams.
Furthermore, we want to claim that our method is available for
measuring the OAM of Bessel vortex beams as well, and the
robust IMI is also applicable to other scalar vortex waves with
larger topological charge, such as electron vortex beams, neu-
tron vortex beams, and X-ray vortex beams. The IMI will be
useful for many applications based on OAM [6,7,36].
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