• Infrared and Laser Engineering
  • Vol. 50, Issue 12, 20211058 (2021)
Peixia Zheng1, Yichen Liu2, and Hongchao Liu1、2、*
Author Affiliations
  • 1Institute of Applied Physics and Materials Engineering, University of Macau, Macao 999078, China
  • 2Department of Physics and Chemistry, Faculty of Science and Technology, University of Macau, Macao 999078, China
  • show less
    DOI: 10.3788/IRLA20211058 Cite this Article
    Peixia Zheng, Yichen Liu, Hongchao Liu. Single-pixel imaging and metasurface imaging (Invited)[J]. Infrared and Laser Engineering, 2021, 50(12): 20211058 Copy Citation Text show less
    References

    [1] Sen P, Chen B, Garg G, et al. Dual photography [C]ACM SIGGRAPH, ACM, 2005: 745755.

    [2] M F Duarte, M A Davenport, D Takhar, et al. Single-pixel imaging via compressive sampling. IEEE Signal Process Mag, 25, 83-91(2008).

    [3] S S Welsh, M P Edgar, R Bowman, et al. Fast full-color computational imaging with single-pixel detectors. Opt Express, 21, 23068-23074(2013).

    [4] L Bian, J Suo, G Situ, et al. Multispectral imaging using a single bucket detector. Sci Rep, 6, 24752(2016).

    [5] F Rousset, N Ducros, F Peyrin, et al. Time-resolved multispectral imaging based on an adaptive single-pixel camera. Opt Express, 26, 10550-10558(2018).

    [6] Z Zhang, S Liu, J Peng, et al. Simultaneous spatial, spectral, and 3D compressive imaging via efficient Fourier single-pixel measurements. Optica, 5, 315-319(2018).

    [7] M P Edgar, G M Gibson, R W Bowman, et al. Simultaneous real-time visible and infrared video with single-pixel detectors. Sci Rep, 5, 1-8(2015).

    [8] W L Chan, K Charan, D Takhar, et al. A single-pixel terahertz imaging system based on compressed sensing. Appl Phys Lett, 93, 121105(2008).

    [9] C M Watts, D Shrekenhamer, J Montoya, et al. Terahertz compressive imaging with metamaterial spatial light modulators. Nat Photonics, 8, 605-609(2014).

    [10] R I Stantchev, B Sun, S M Hornett, et al. Noninvasive, near-field terahertz imaging of hidden objects using a single-pixel detector. Sci Adv, 2, e1600190(2016).

    [11] V Studer, J Bobin, M Chahid, et al. Compressive fluorescence microscopy for biological and hyperspectral imaging. Proc Natl Acad Sci U S A, 109, E1679-E1687(2012).

    [12] N Radwell, K J Mitchell, G M Gibson, et al. Single-pixel infrared and visible microscope. Optica, 1, 285-289(2014).

    [13] Y Wu, P Ye, I O Mirza, et al. Experimental demonstration of an optical-sectioning compressive sensing microscope (CSM). Opt Express, 18, 24565-24578(2010).

    [14] E Tajahuerce, V Durán, P Clemente, et al. Image transmission through dynamic scattering media by single-pixel photodetection. Opt Express, 22, 16945-16955(2014).

    [15] V Durán, F Soldevila, E Irles, et al. Compressive imaging in scattering media. Opt Express, 23, 14424-14433(2015).

    [16] Y Zhang, M P Edgar, B Sun, et al. 3D single-pixel video. J Opt, 18, 035203(2016).

    [17] B Sun, M P Edgar, R Bowman, et al. 3D computational imaging with single-pixel detectors. Science, 340, 844-847(2013).

    [18] G A Howland, P B Dixon, J C Howell. Photon-counting compressive sensing laser radar for 3D imaging. Appl Opt, 50, 5917-5920(2011).

    [19] M J Sun, M P Edgar, D B Phillips, et al. Improving the signal-to-noise ratio of single-pixel imaging using digital microscanning. Opt Express, 24, 10476-10485(2016).

    [20] Z Zhang, J Zhong. Three-dimensional single-pixel imaging with far fewer measurements than effective image pixels. Opt Lett, 41, 2497-2500(2016).

    [21] W K Yu, X F Liu, X R Yao, et al. Complementary compressive imaging for the telescopic system. Sci Rep, 4, 1-6(2014).

    [22] W Gong, C Zhao, H Yu, et al. Three-dimensional ghost imaging lidar via sparsity constraint. Sci Rep, 6, 26133(2016).

    [23] T Pittman, Y Shih, D Strekalov, et al. Optical imaging by means of two photonquantum entanglement. Phys Rev A, 52, R3429(1995).

    [24] D Strekalov, A Sergienko, D Klyshko, et al. Observation of two photon "ghost" interference and diffraction. Phys Rev Lett, 74, 3600(1995).

    [25] R S Bennink, S J Bentley, R W Boyd. "Two photon" coincidence imaging witha classical source. Phys Rev Lett, 89, 113601(2002).

    [26] A Valencia, G Scarcelli, M D'Angelo, et al. Two-photon imaging with thermal light. Phys Rev Lett, 94, 063601(2005).

    [27] J H Shapiro. Computational ghost imaging. Phys Rev A, 78, 061802(2008).

    [28] M P Edgar, G M Gibson, M J Padgett. Principles and prospects for single-pixel imaging. Nat Photonics, 13, 13-20(2019).

    [29] P Clemente, V Durán, E Tajahuerce, et al. Optical encryption based on computational ghost imaging. Opt Lett, 35, 2391-2393(2010).

    [30] B I Erkmen. Computational ghost imaging for remote sensing. JOSA A, 29, 782-789(2012).

    [31] F Ferri, D Magatti, L A Lugiato, et al. Differential ghost imaging. Phys Rev Lett, 104, 253603(2010).

    [32] C Zhao, W Gong, M Chen, et al. Ghost imaging lidar via sparsity constraints. Appl Phys Lett, 101, 141123(2012).

    [33] O Katz, Y Bromberg, Y Silberberg. Compressive ghost imaging. Appl Phys Lett, 95, 131110(2009).

    [34] Deng Chao, Suo Jinli, Zhang Zhili, et al. Coding decoding of optical infmation in singlepixel imaging[J]. Infrared Laser Engineering, 2019, 48(6): 0603004. (in Chinese)

    [35] Y Liu, X Zhang. Metamaterials: A new frontier of science and technology. Chem Soc Rev, 40, 2494-2507(2011).

    [36] D R Smith, W J Padilla, D C Vier, et al. Composite medium with simultaneously negative permeability and permittivity. Phys Rev Lett, 84, 4184(2000).

    [37] R A Shelby, D R Smith, S Schultz. Experimental verification of a negative index of refraction. Science, 292, 77-79(2001).

    [38] H T Chen, A J Taylor, N Yu. A review of metasurfaces: Physics and applications. Rep Prog Phys, 79, 076401(2016).

    [39] O Quevedo-Teruel, H Chen, A Díaz-Rubio, et al. Roadmap on metasurfaces. J Opt, 21, 073002(2019).

    [40] S B Glybovski, S A Tretyakov, P A Belov, et al. Metasurfaces: From microwaves to visible. Phys Rep, 634, 1-72(2016).

    [41] N Yu, P Genevet, M A Kats, et al. Light propagation with phase discontinuities: Generalized laws of reflection and refraction. Science, 334, 333-337(2011).

    [42] X Ni, N K Emani, A V Kildishev, et al. Broadband light bending with plasmonic nanoantennas. Science, 335, 427-427(2012).

    [43] L Huang, X Chen, H Muhlenbernd, et al. Dispersionless phase discontinuities for controlling light propagation. Nano Lett, 12, 5750-5755(2012).

    [44] S Sun, K Y Yang, C M Wang, et al. High-efficiency broadband anomalous reflection by gradient meta-surfaces. Nano Lett, 12, 6223-6229(2012).

    [45] F Aieta, P Genevet, M A Kats, et al. Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces. Nano Lett, 12, 4932-4936(2012).

    [46] X Ni, S Ishii, A V Kildishev, et al. Ultra-thin, planar, Babinet-inverted plasmonic metalenses. Light Sci Appl, 2, e72-e72(2013).

    [47] A Pors, M G Nielsen, R L Eriksen, et al. Broadband focusing flat mirrors based on plasmonic gradient metasurfaces. Nano Lett, 13, 829-834(2013).

    [48] X Chen, L Huang, H Mühlenbernd, et al. Dual-polarity plasmonic metalens for visible light. Nat Commun, 3, 1-6(2012).

    [49] J Zeng, L Li, X Yang, et al. Generating and separating twisted light by gradient–rotation split-ring antenna metasurfaces. Nano Lett, 16, 3101-3108(2016).

    [50] J Zeng, J Gao, T S Luk, et al. Structuring light by concentric-ring patterned magnetic metamaterial cavities. Nano Lett, 15, 5363-5368(2015).

    [51] Y Yang, W Wang, P Moitra, et al. Dielectric meta-reflectarray for broadband linear polarization conversion and optical vortex generation. Nano Lett, 14, 1394-1399(2014).

    [52] A Arbabi, Y Horie, M Bagheri, et al. Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission. Nat Nanotechnol, 10, 937-943(2015).

    [53] N Yu, F Aieta, P Genevet, et al. A broadband, background-free quarter-wave plate based on plasmonic metasurfaces. Nano Lett, 12, 6328-6333(2012).

    [54] A Pors, M G Nielsen, S I Bozhevolnyi. Broadband plasmonic half-wave plates in reflection. Opt Lett, 38, 513-515(2013).

    [55] S C Jiang, X Xiong, Y S Hu, et al. Controlling the polarization state of light with a dispersion-free metastructure. Phys Rev X, 4, 021026(2014).

    [56] Y Zhao, A Alù. Tailoring the dispersion of plasmonic nanorods to realize broadband optical meta-waveplates. Nano Lett, 13, 1086-1091(2013).

    [57] S Kruk, B Hopkins, I I Kravchenko, et al. Invited Article: Broadband highly efficient dielectric metadevices for polarization control. APL Photonics, 1, 030801(2016).

    [58] L Huang, X Chen, H Mühlenbernd, et al. Three-dimensional optical holography using a plasmonic metasurface. Nat Commun, 4, 1-8(2013).

    [59] G Zheng, H Mühlenbernd, M Kenney, et al. Metasurface holograms reaching 80% efficiency. Nat Nanotechnol, 10, 308-312(2015).

    [60] D Wen, F Yue, G Li, et al. Helicity multiplexed broadband metasurface holograms. Nat Commun, 6, 1-7(2015).

    [61] J P B Mueller, N A Rubin, R C Devlin, et al. Metasurface polarization optics: independent phase control of arbitrary orthogonal states of polarization. Phys Rev Lett, 118, 113901(2017).

    [62] G Y Lee, J Sung, B Lee. Recent advances in metasurface hologram technologies (Invited paper). ETRI Journal, 41, 10-22(2019).

    [63] L Huang, S Zhang, T Zentgraf. Metasurface holography: from fundamentals to applications. Nanophotonics, 7, 1169-1190(2018).

    [64] L Li, T J Cui, W Ji, et al. Electromagnetic reprogrammable coding-metasurface holograms. Nat Commun, 8, 1-7(2017).

    [65] H C Liu, B Yang, Q Guo, et al. Single-pixel computational ghost imaging with helicity-dependent metasurface hologram. Sci Adv, 3, e1701477(2017).

    [66] Haixiao Zhao, Yan Guo, Peiming Li, et al. Investigation of single-pixel imaging in signal-to-noise ratio and its development at special wavelength. Laser & Optoelectronics Progress, 58, 1011010(2021).

    [67] P Zheng, Q Dai, Z Li, et al. Metasurface-based key for computational imaging encryption investigation of single-pixel imaging in signal-to-noise ratio and its development at special wavelength. Sci Adv, 7, eabg0363(2021).

    [68] Nikolova N K. Introduction to Microwave Imaging[M]. Cambridge: Cambridge University Press, 2017.

    [69] X Chen. Subspace-based optimization method for solving inverse-scattering problems. IEEE Transactions on Geoscience & Remote Sensing, 48, 42-49(2009).

    [70] R Palmeri, M T Bevacqua, L Crocco, et al. Microwave imaging via distorted iterated virtual experiments. IEEE Transactions on Antennas and Propagation, 65, 829-838(2016).

    [71] M T Ghasr, M A Abou-Khousa, S Kharkovsky, et al. Portable real-time microwave camera at 24 GHz. IEEE Transactions on Antennas and Propagation, 60, 1114-1125(2011).

    [72] Soumekh M. Synthetic Aperture Radar Signal Processing[M]. New Yk: Wiley, 1999.

    [73] S S Ahmed, A Schiessl, L P Schmidt. A novel fully electronic active real-time imager based on a planar multistatic sparse array. IEEE Trans Microw Theory Tech, 59, 3567-3576(2011).

    [74] B Gonzalez-Valdes, G Allan, Y Rodriguez-Vaqueiro, et al. Sparse array optimization using simulated annealing and compressed sensing for near-field millimeter wave imaging. IEEE Transactions on Antennas and Propagation, 62, 1716-1722(2013).

    [75] Jackson D R, Onliner A A. Leakywave Antennas [M]Balanis C A. Modern Antenna Hbook, New Yk: Wiley, 2008.

    [76] C L Holloway, A Dienstfrey, E F Kuester, et al. A discussion on the interpretation and characterization of metafilms/ metasurfaces: The two-dimensional equivalent of metamaterials. Metamaterials, 3, 100-112(2009).

    [77] J Hunt, T Driscoll, A Mrozack, et al. Metamaterial apertures for computational imaging. Science, 339, 310-313(2013).

    [78] J Hunt, J Gollub, T Driscoll, et al. Metamaterial microwave holographic imaging system. JOSA A, 31, 2109-2119(2014).

    [79] T Sleasman, M F Imani, J N Gollub, et al. Dynamic metamaterial aperture for microwave imaging. Appl Phys Lett, 107, 204104(2015).

    [80] T Sleasman, M Boyarsky, M F Imani, et al. Design considerations for a dynamic metamaterial aperture for computational imaging at microwave frequencies. JOSA B, 33, 1098-1111(2016).

    [81] A V Diebold, M F Imani, T Sleasman, et al. Phaseless computational ghost imaging at microwave frequencies using a dynamic metasurface aperture. Appl Opt, 57, 2142-2149(2018).

    [82] A V Diebold, M F Imani, T Sleasman, et al. Phaseless coherent and incoherent microwave ghost imaging with dynamic metasurface apertures. Optica, 5, 1529-1541(2018).

    [83] Weitao Liu, Shuai Sun, Hongkang Hu, et al. Progress and prospect for ghost imaging of moving objects. Laser & Optoelectronics Progress, 58, 1011001(2021).

    Peixia Zheng, Yichen Liu, Hongchao Liu. Single-pixel imaging and metasurface imaging (Invited)[J]. Infrared and Laser Engineering, 2021, 50(12): 20211058
    Download Citation