• Matter and Radiation at Extremes
  • Vol. 7, Issue 2, 026903 (2022)
Weipeng Yao1、2、a), Julien Capitaine2, Benjamin Khiar3, Tommaso Vinci1, Konstantin Burdonov1、2、4, Jérôme Béard5, Julien Fuchs1, and Andrea Ciardi2
Author Affiliations
  • 1LULI–CNRS, CEA, Sorbonne Université, Ecole Polytechnique, Institut Polytechnique de Paris, F-91128 Palaiseau cedex, France
  • 2Sorbonne Université, Observatoire de Paris, Université PSL, CNRS, LERMA, F-75005 Paris, France
  • 3Office National d’Etudes et de Recherches Aérospatiales (ONERA), F-91123 Palaiseau, France
  • 4IAP, Russian Academy of Sciences, 603950 Nizhny Novgorod, Russia
  • 5LNCMI, UPR 3228, CNRS-UGA-UPS-INSA, F-31400 Toulouse, France
  • show less
    DOI: 10.1063/5.0058306 Cite this Article
    Weipeng Yao, Julien Capitaine, Benjamin Khiar, Tommaso Vinci, Konstantin Burdonov, Jérôme Béard, Julien Fuchs, Andrea Ciardi. Characterization of the stability and dynamics of a laser-produced plasma expanding across a strong magnetic field[J]. Matter and Radiation at Extremes, 2022, 7(2): 026903 Copy Citation Text show less
    References

    [1] D. A.Gurnett, M. B.Pongratz, P. A.Bernhardt, A.Valenzuela, G.Haerendel, R. R.Anderson, R. A.Roussel-Dupre. Observations and theory of the AMPTE magnetotail barium releases. J. Geophys. Res.: Space Phys., 92, 5777-5794(1987).

    [2] K.Shigemori, T.Johzaki, Z.Zhang, H.Nakashima, T.Watanabe, S.Fujioka, N.Yamamoto, Y.Hironaka, A.Sunahara, K.Ishihara et al. Kilotesla magnetic field due to a capacitor-coil target driven by high power laser. Sci. Rep., 3, 1170(2013).

    [3] B.Albertazzi, S. N.Chen, T.Burris-Mog, A.Ciardi, T.Vinci, D.Da Silva, J.Albrecht, S.Dittrich, J.Béard, J.Billette et al. Production of large volume, strongly magnetized laser-produced plasmas by use of pulsed external magnetic fields. Rev. Sci. Instrum., 84, 043505(2013).

    [4] S.Orlando, B.Khiar, J.Béard, M.Blecher, R.Bonito, G.Revet, S. N.Chen, E.Filippov, D. P.Higginson, C.Argiroffi et al. Laboratory unraveling of matter accretion in young stars. Sci. Adv., 3, e1700982(2017).

    [5] K.Germaschewski, R. K.Follett, W.Fox, S. X.Hu, D.Haberberger, G.Fiksel, D. H.Barnak, D. B.Schaeffer, A.Bhattacharjee. High-Mach number, laser-driven magnetized collisionless shocks. Phys. Plasmas, 24, 122702(2017).

    [6] M.Koenig, T.Moritaka, C. D.Gregory, N.Woolsey, T.Morita, K.Tomita, T.Sano, Y.Kuramitsu, H.Takabe, Y.Sakawa et al. Magnetic reconnection driven by electron dynamics. Nat. Commun., 9, 5109(2018).

    [7] J.Béard, W.Yao, S.Bola?os, A.Fazzini, S. N.Chen, K.Burdonov, P.Antici et al. Laboratory evidence for proton energization by collisionless shock surfing. Nat. Phys., 17, 1177-1182(2021).

    [8] S. N.Chen, S.Bola?os, K.Burdonov, P.Antici, J.Béard, A.Fazzini, W.Yao et al. Detailed characterization of a laboratory magnetized supercritical collisionless shock and of the associated proton energization. Matter Radiat. Extremes, 7, 014402(2022).

    [9] A.Korzhimanov, K.Burdonov, S. N.Chen, A.Sladkov, A.Ciardi, W.Yao, R.Bonito et al. Laboratory modelling of equatorial ‘tongue’accretion channels in young stellar objects caused by the Rayleigh-Taylor instability. Astron. Astrophys., 657, A112(2022).

    [10] A.Ciardi, J.Béard, W.Yao, S. N.Chen, K.Burdonov, E.d’Humières, A.Fazzini et al. Particle energization in colliding subcritical collisionless shocks investigated in the laboratory(2022).

    [11] R. A.Vesey, S. A.Slutz. High-gain magnetized inertial fusion. Phys. Rev. Lett., 108, 025003(2012).

    [12] M. R.Weis, P.-Y.Chang, K. J.Peterson, R.Betti, A. B.Sefkow, E. M.Campbell, D. H.Barnak, J. R.Davies, D. B.Sinars. Laser-driven magnetized liner inertial fusion. Phys. Plasmas, 24, 062701(2017).

    [13] E. D.Filippov, J.Béard, K. F.Burdonov, G.Revet, S. S.Makarov, S.Bola?os, J.Hare, A.Guediche, S. N.Chen, W.Yao et al. Enhanced x-ray emission arising from laser-plasma confinement by a strong transverse magnetic field. Sci. Rep., 11, 8180(2021).

    [14] M.Edwards, L.Divol, A.James, R.Town, P.Davis, J.Ross, B.Pollock, A.Offenberger, D.Price, D.Froula et al. Quenching of the nonlocal electron heat transport by large external magnetic fields in a laser-produced plasma measured with imaging Thomson scattering. Phys. Rev. Lett., 98, 135001(2007).

    [15] B.Albertazzi, O.Portugall, J.Fuchs, A.Ciardi, C.Riconda, H.Pépin, T.Vinci. Astrophysics of magnetically collimated jets generated from laser-produced plasmas. Phys. Rev. Lett., 110, 025002(2013).

    [16] T.Vinci, Z.Burkley, A.Ciardi, J.Béard, J.Billette, B.Albertazzi, S. N.Chen, M.Nakatsutsumi, R.Bonito, M.Borghesi et al. Laboratory formation of a scaled protostellar jet by coaligned poloidal magnetic field. Science, 346, 325-328(2014).

    [17] D.Khaghani, G.Revet, D. P.Higginson, K.Burdonov, B.Khiar, J.Béard, M.Blecher, M.Borghesi, S. N.Chen, E.Filippov et al. Detailed characterization of laser-produced astrophysically-relevant jets formed via a poloidal magnetic nozzle. High Energy Density Phys., 23, 48-59(2017).

    [18] R.Presura, C.Plechaty, A. A.Esaulov. Focusing of an explosive plasma expansion in a transverse magnetic field. Phys. Rev. Lett., 111, 185002(2013).

    [19] B. H.Ripin, A. N.Mostovych, J. A.Stamper. Laser produced plasma jets: Collimation and instability in strong transverse magnetic fields. Phys. Rev. Lett., 62, 2837(1989).

    [20] E.Fabre, P.Vasseur, H.Lamain, J.Bruneteau. Experimental investigation of the production and containment of a laser-produced plasma. Phys. Fluids, 13, 1795-1801(1970).

    [21] T.Matoba, S.Ariga. Motion and collision of plasma blobs produced by giant pulse laser in a transverse magnetic field. J. Phys. Soc. Jpn., 30, 1477-1487(1971).

    [22] G.Jellison, C.Parsons. Resonant shadowgraph and schlieren studies of magnetized laser-produced plasmas. Phys. Fluids, 24, 1787-1790(1981).

    [23] T.Sekiguchi, K.Sato, S.Okada. Behaviour of laser-produced plasma in a uniform magnetic field–plasma instabilities. Jpn. J. Appl. Phys., 20, 157(1981).

    [24] A. N.Mostovych, T. A.Peyser, J.Grun, C.Pawley, B. H.Ripin, J. A.Stamper, C. K.Manka, J.Huba, A. B.Hassam, E. A.McLean. Large-Larmor-radius interchange instability. Phys. Rev. Lett., 59, 2299(1987).

    [25] H. R.Burris, J. D.Huba, J.Grun, C. K.Manka, E. A.McLean, B. H.Ripin, T.Peyser. Sub-Alfvénic plasma expansion. Phys. Fluids B, 5, 3491-3506(1993).

    [26] D.Winske. Development of flute modes on expanding plasma clouds. Phys. Fluids B, 1, 1900-1910(1989).

    [27] J. D.Huba, A. B.Hassam, D.Winske. Stability of sub-Alfvénic plasma expansions. Phys. Fluids B, 2, 1676-1697(1990).

    [28] T. A.Peyser, B. H.Ripin, G.Ganguli, C. K.Manka. Electron–ion hybrid instability in laser-produced plasma expansions across magnetic fields. Phys. Fluids B, 4, 2448-2458(1992).

    [29] J. D.Huba, A. B.Hassam. Nonlinear evolution of the unmagnetized ion Rayleigh–Taylor instability. Phys. Fluids B, 2, 2001-2006(1990).

    [30] I. F.Shaikhislamov, V. V.Pickalov, V. M.Antonov, V. G.Posukh, Y. P.Zakharov, A. V.Melekhov, E. L.Boyarintsev. Role of the Hall flute instability in the interaction of laser and space plasmas with a magnetic field. Plasma Phys. Rep., 32, 183-204(2006).

    [31] H.-b.Tang, G.-y.Hu, B.Zhao, P.Zhu, Y.-l.Wang, T.Tao, Y.-h.Liang, P.Hu, Y.Zuo, P.Yuan et al. Observation of large Larmor radius instability in laser plasma expanding into a 10 T external magnetic field. Phys. Plasmas, 27, 022108(2020).

    [32] S.Neff, V.Ivanov, C.Plechaty, Y.Stepanenko, S.Stein, D.Martinez, R.Presura. Penetration of a laser-produced plasma across an applied magnetic field. High Energy Density Phys., 6, 258-261(2010).

    [33] K.Burdonov, S. S.Makarov, S. N.Chen, M.Cerchez, B.Khiar, J.Béard, E.Filippov, A.Ciardi, T.Gangolf, G.Revet et al. Laser-produced magnetic-Rayleigh-Taylor unstable plasma slabs in a 20 T magnetic field. Phys. Rev. Lett., 123, 205001(2019).

    [34] S. N.Bland, C. A.Jennings, J. P.Chittenden, S. V.Lebedev, A.Ciardi. X-ray generation mechanisms in three-dimensional simulations of wire array Z-pinches. Plasma Phys. Controlled Fusion, 46, B457(2004).

    [35] S. C.Bott, S. V.Lebedev, D. J.Ampleford, A.Frank, S. N.Bland, E. G.Blackman, A.Ciardi, J. P.Chittenden, C. J.Jennings, J.Rapley et al. The evolution of magnetic tower jets in the laboratory. Phys. Plasmas, 14, 056501(2007).

    [36] G.Revet. Modelling magnetized accretion columns of young stars in the laboratory(2018).

    [37] D.Del Sarto, F.Pegoraro, F.Cornolti, F.Cattani, F.Califano, A.Schiavi, S.Atzeni, T. V.Liseykina, A.Macchi. Fluid and kinetic simulation of inertial confinement fusion plasmas. Comput. Phys. Commun., 169, 153-159(2005).

    [38] D. P.Higginson, M.Blecher, B.Khiar, S. N.Chen, J.Béard, D.Khaghani, K.Burdonov, M.Borghesi, E.Filippov, G.Revet et al. Enhancement of quasistationary shocks and heating via temporal staging in a magnetized laser-plasma jet. Phys. Rev. Lett., 119, 255002(2017).

    [39] B.Trubnikov. Particle interactions in a fully ionized plasma. Rev. Plasma Phys, 1, 105-140(1965).

    [40] D.Ryutov, B. A.Remington, W. M.Wood‐Vasey, J.Kane, R. P.Drake, E.Liang. Similarity criteria for the laboratory simulation of supernova hydrodynamics. Astrophys. J., 518, 821(1999).

    [41] B.Khiar. Laboratory astrophysics with magnetized laser-produced plasmas(2017).

    [42] T. S.Green, G. B. F.Niblett. Rayleigh-Taylor instabilities of a magnetically accelerated plasma. Nucl. Fusion, 1, 42(1960).

    Weipeng Yao, Julien Capitaine, Benjamin Khiar, Tommaso Vinci, Konstantin Burdonov, Jérôme Béard, Julien Fuchs, Andrea Ciardi. Characterization of the stability and dynamics of a laser-produced plasma expanding across a strong magnetic field[J]. Matter and Radiation at Extremes, 2022, 7(2): 026903
    Download Citation